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FOREWORD 

Commercial applications of data mining in areas such as e-commerce, market-basket analysis, 
text-mining, and web-mining have taken .on a central focus in the JCDD community. However, 
there is a significant amount of innovative data mining work taking place in the context of 
scientific and engineering applications that is not well represented in the mainstream KDD 
conferences. For example, scientific data mining techniques are being developed and applied to 
diverse fields such as remote sensing, physics, chemistry, biology, astronomy, structural 
mechanics, computational fluid dynamics etc. In these areas, data mining frequently complements 
and enhances existing analysis methods based on statistics, exploratory data analysis, and 
domain-specific approaches. 

On the surface, it may appear that data from one scientific field, say genomics, is very different 
from another field, such as physics. However, despite their diversity, there is much that is 
common across the mining of scientific and engineering data. For example, techniques used to 
identify objects in images are very similar, regardless of whether the images came from a remote 
sensing application, a physics experiment, an astronomy observation, or a medical study. Further, 
with data mining being applied to new types of data, such as mesh data from scientific 
simulations, there is the opportunity to apply and extend data mining to new scientific domains. 

This one-day workshop brings together data miners analyzing science data and scientists from 
diverse fields to share their experiences, learn how techniques developed in one field can be 
applied in another, and better understand some of the newer techniques being developed in the 
KDD community. This is the fourth workshop on the topic of Mining Scientific Data sets; for 
information on earlier workshops, see http://www.ahpcrc.org/conferences/. This workshop 
continues the tradition of addressing challenging problems in a field where the diversity of 
applications is matched only by the opportunities that await a practitioner. 

We would like to thank the authors and the attendees for contributing to the success of this 
workshop. Special thanks to the referees for reviewing the manuscripts submitted. 

Chandrika Kamath (on behalf of the workshop organizers) 
Center for Applied Scientific Computing 
Lawrence Livermore National Laboratory 

http://www.ahpcrc.org/conferences
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ABSTRACT 
This paper reports on recent work applying 

data mining to the task of finding interesting patterns in 
earth science data derived from global observing 
satellites, terrestrial observations, and ecosystem 
models. Patterns are “interesting” if ecosystem 
scientists can use them to better understand and predict 
changes in the global carbon cycle and climate system. 
The initial goal of the work reported here (which is 
only part of the overall project) is to use clustering to 
divide the land and ocean areas of the earth into 
disjoint regions in an automatic, but meaningful, way 
that enables the direct or indirect discovery of 
interesting patterns. Finding “meaningful” clusters 
requires an approach that is aware of various issues 
related to the spatial and temporal nature of earth 
science data: the “proper” measwe of similarity 
between time series, removing seasonality fYom the 
data to allow detection of non-seasonal patterns, and 
the presence of spatial and temporal autocorrelation 
(i.e., measured values that are close in time and space 
tend to be highly correlated, or similar). While we 
have techniques to handle some of these spatio- 
temporal issues (e.g., removing seasonality) and some 
issues are not a problem (e.g., spatial autocorrelation 
actually helps our clustering), other issues require more 
study (e.g., temporal autocorrelation and its effect on 
time series similarity). Nonetheless, by using the K- 
means as our clustering algorithm and talung linear 
correlation as our measure of similarity between time 
series, we have been able to find some interesting 
ecosystem patterns, including some that are well known 
to earth scientists and some that require further 
investigation. 

{klooster,atorregrosa@gaia.arc.nasa.gov) 

Keywords 
K-means clustering, time series, earth science data, 
scientific data mining 

1. INTRODUCTION 
The project team to which we belong is a group of 
computer and ecosystem scientists focusing on the 
development of algorithms and tools to help ecologists 
discover changes in the global carbon cycle and 
climate system. These techniques will aid ecologists in 
their efforts to better understand global scale changes 
in biosphere processes and patterns, and the effects of 
widespread human activities, such as deforestation, 
biomass burning, industrialization, and urbanization. 
Ecologists who work at the regional and global scale 
have identified Net Primary Production (NPP) as a key 
variable for understanding the global carbon cycle and 
the ecological dynamics of the Earth. NPP is the net 
assimilation of atmospheric carbon dioxide (eoz)  into 
organic matter by plants. Terrestrial NPP is driven by 
solar radiation and can be constrained by precipitation 
and temperature. Keeping track of NPP is important 
because it includes the food source of humans and all 
other animals and thus, sudden changes in the NPP of a 
region can have a direct impact on the regional 
ecology. An ecosystem model for predicting NPP, 
CASA (the Carnegie Ames Stanford Approach 
[PKB99]), has been used for over a decade to produce 
a detailed view of terrestrial productivity. 

Our project uses the multi-year output of 
CASA, as well as other climate variables, such as long 
term sea level pressure, sea surface temperature (SST) 
anomalies, etc., to discover interesting patterns relating 
changes in NPP to land surface climatology and global 

* This work was partially supported by NASA grant # NCC 2 1231 and by Army High Performance Computing Research Center contract 
number DAAH04-95-C-0008. The content of this work does not necessarily reflect the position or policy of the government and no official 
endorsement should be inferred. Access to computing facilities was provided by AHF’CRC and the Minnesota Supercomputing Institute. 



climate. Predicting NPP based on, for example, sea 
surface temperature, would be of great benefit given 
the near real-time availability of SST data and the 
ability of climate forecasting to anticipate SST El 
NinoILa Nina events. For a number of years, ecosystem 
scientists on our team have used traditional statistical 
tools for spatio-temporal data analyses relating NPP 
and other climate variables. Data mining [KH99] can 
complement these statistical tools in many ways, e.g., 
some of the steps of hypothesis generation and 
evaluation can be automated, facilitated and improved. 

In this paper we report on a portion of the 
work involved in this project. In particular, the initial 
goal of the work reported here is to use clustering to 
divide areas of the land and ocean into disjoint regions 
in an automatic, but meaningful way that enables us to 
identify regions of the earth whose constituent points 
have similar short-term and long-term climate 
characteristics. Given relatively uniform clusters we 
can then identify how various ecosystem phenomena, 
such as El Nino, influence the climate and NPP of 
different regions. 

There are significant issues related to the 
spatial and temporal nature of earth science data: the 
“proper” measure of similapity between time series, the 
seasonality of the data, and the presence of spatial and 
temporal autocorrelation (i.e., measured values that are 
close in time and space tend to be highly correlated, or 
similar). Although sophisticated approaches to time 
series similarity are available, e.g., dynamic time 
warping, we chose standard linear correlation as our 
similarity measure since it works well with our 
clustering algorithm (K-means) and lends itself to 
statistical tests. Since earth science data has a very 
cyclical (e.g., seasonal) nature, and since earth 
scientists are mostly interested in non-seasonal 
patterns, we typically used a couple of preprocessing 
techniques (moving average and monthly Z-score) to 
remove seasonality fi-om the data before clustering. 
However, these seasonality removal techniques affect 
the degree of temporal autocorrelation of the data (both 
positively and negatively), and hence, affect the 
“significance” of the observed correlations. On the 
other hand, the high degree of spatial autocorrelation of 
the earth science data we are analyzing actually is 
beneficial, allowing our K-means clustering algorithm 
to produce clusters consist mostly of a relatively small 
number of geographically contiguous regions. 

The basic outline of this paper is as follows. 
Section 2 provides a description of the earth science 
data. Section 3 describes our clustering technique, 
which is based on K-means. Section 4 discusses 
related clustering work and Section 5 considers the 
issue of how to preprocess the data to remove 
seasonality patterns. Section 6 describes our initial 

results in applying clustering to earth science data, 
while section 7 is a short conclusion and an indication 
of future directions. 

2. Earth Science Data 
The earth science data for our analysis consists of 
global snapshots of measurement values for a number 
of variables (e.g., NPP, temperature, pressure and 
precipitation) collected for all land surfaces or water 
(see Figure 1). These variable values are either 
observations from different sensors, e.g., precipitation 
and -sea surface temperature (SST), or the result of 
model predictions, e.g., NF’P from the CASA model, 
and are typically available at monthly intervals that 
span a range of 10 to 50 years. The attribute data 
within a global snapshot is represented using spatial 
fi-ameworks, i.e., a partitioning of the Earth’s surface 
into a set of mutually disjoint regions which 
collectively cover the entire surface of Earth. For the 
analysis presented here, we focus on attributes 
measured on latitude-longitude spherical grids of 
different resolutions, e.g., NPP, which is available at a 
resolution of 0.5” x 0.5”, and sea surface temperature, 
which is available for a 1 O x 1 O grid. 

Global Snapshot for Time tl Global Snapshot for Time tz 

zone Time 
I 3 

Figure 1: A simplified view of the problem domain. 

Using variables derived from sensor 
observations, earth scientists have developed standard 
climate indices. These indices are useful because 1) 
they can distill climate variability at a regional or 
global scale into a single time series, 2) they are related 
to well-known climate phenomena such as El Nino, and 
3) they are well-accepted by earth scientists. For 
example, various El Nino related indices, such as 
ANOM1+2 and ANOM4, have been established to 
measure sea surface temperature anomalies across 
different regions of the Pacific Ocean. (El Nino is the 
anomalous warming of the eastern tropical region of 
the Pacific, and has been linked to various climate 
phenomena such as droughts in Australia and heavy 
rainfall along the western coast of South America.) 
Some of the well-known climate indices are shown in 
Table 1 [INDl, IND21. Figure 2 shows the time series 
for the ANOM1+2 index. Note that the peak in 1982 
and 1983 corresponds to a severe El Nino event. 



Climate 
Index 

I NAo 
ANOM 1+2 

Description 

Measures the sea level pressure (SLP) anomalies 
between Danvin and Tahiti 

Normalized SLP differences between Ponta 
Delgada, Azores and Stykkisholmur, Iceland 

Sea surface temperature anomalies in the region 

bounded bv 150°W-160aW and 5?3-5”N 

Area-weighted sea level pressure over the region 
30N-65N, 160E-130W 

Table 1: Description of well-known climate indices. 

Figure 2: ANOM 1+2 time series. 

3. A K-means Based Clustering Approach 
Clustering, often better known as spatial zone 
formation in this context, segments oceans and land 
into smaller pieces that are relatively homogeneous in 
some sense. While these zones can be specified directly 
by researchers, clustering provides a general data 
mining approach for automatically creating zones. 
Thus, our basic approach is to treat the zone creation 
problem as a cluster analysis problem [DJSS, KR901. 
Cluster analysis groups objects (grid cells) so that the 
objects in a group are similar to one another and 
different &om the objects in other groups. The clusters 
produced may be nested (hierarchical) or un-nested 
(partitional), overlapping or non-overlapping. 

For our initial clustering approach, we chose 
the widely used K-means clustering algorithm PJSS], 
which is simple and efficient. As our results will show, 
it was effective for our use of clustering during 
exploratory data analysis. 

The K-means algorithm discovers K (non- 
overlapping) clusters by finding K centroids (“central” 

points) and then assigning each point to the cluster 
associated with its nearest centroid. (Note that a 
cluster centroid is typically the mean or median of the 
points in its cluster and “nearness” is defined by a 
distance or similarity function.) Ideally the centroids 
are chosen to minimize the total “error,” where the 
error for each point is given by a function that 
measures the discrepancy between a point and its 
cluster centroid, e.g., the squared distance. Note that a 
measure of cluster “goodness” is the error contributed 
by that cluster. For squared error and Euclidean 
distance, it can be shown [And731 that a gradient 
descent approach to minimizing the squared error 
yields the following basic K-means algorithm. (Note 
that the previous discussion still holds if we use 
similarities instead of distances, but ow optimization 
problem becomes a maximization problem.) 

Basic K-means Algorithm for finding K clusters. 

1. Select K points as the initial centroids. 
2.  Assign all points to the closest centroid. 
3. Recompute the centroid of each cluster. 
4. Repeat steps 2 and 3 until the centroids don’t change 

K-means has a number of variations, 
depending on the method for selecting the initial 
centroids, the choice for the measure of similarity, and 
the way that the centroid is computed. For this work, 
we followed the common practice of using the mean as 
the centroid and selecting the initial centroids 
randomly. For our similarity measure, we chose 
Pearson’s correlation coefficient, which is defined as 
follows: The correlation coefficient r of two data 
vectors, x and y is given by 

(or change very little). 

r = d- , where xi (yi) is the 

value of the ifh attribute of x b), and 2 (7) is the 

C(xj  -X) C(Yj -j’9 

average value of all attributes of x 0. Correlation has 
a value between -1 (perfect negative linear correlation) 
and 1 (perfect positive linear correlation), with a value 
of 0 indicating no linear correlation. 

Since we are using correlation instead of 
Euclidean distance, there is a question of whether K- 
means will still “work.” However, if the data is 
standardized by subtracting off the mean and dividing 
by the standard deviation, then a bit of algebraic 
manipulation will show that the correlation and the 
Euclidean distance are monotonically related, as shown 
in following equation 



, where x* and 

y* are the standardized vectors of dimension n, and r 
and d are the correlation and Euclidean distance 
functions, respectively. Thus, the traditional K-means 
algorithm will “work” when used with correlation. 
Furthermore, the measure of cluster goodness that 
corresponds (at least monotonically) to the traditional 
squared distance is the sum of the similarity of each 
point in a cluster to the cluster centroid. 

We make a brief comment about our reasons 
for using correlation. First, correlation is insensitive to 
changes in scale, and since we want to compare time 
series of different variable types, e.g., NPP and SST, 
we need this property. Also, correlation has been well 
studied by statisticians and thus, confidence intervals 
and tests for non-zero correlation are readily available. 
Finally, correlation is widely used as a measure of 
similarity between time series. 

4. Related Work 
In this section we discuss other techniques 

that have recently been used to cluster earth science 
data. The goal is to indicate possible alternatives to K- 
means, and to further illustrate some of issues involved 
in clustering earth science data. 

In [SID99], a mixture model approach is used 
to identify the cluster structure in atmospheric pressure 
data. (Mixture models assume that the data is 
generated probabilistically hom a mixture of Gaussian 
distributions and use the data to estimate the 
parameters of these distributions.) This approach is 
related to K-means [Mit97], but has two advantages. 
First, it assigns a “membership” probability to each 
data point and each cluster. These probabilities 
provide a measure of the uncertainty in cluster 
membership. Second, it is sometimes possible to 
estimate the most appropriate choice for K [SID99]. 
(It is also possible to estimate the best K for K-means 
by plotting the overall error or similarity for different 
values of K and looking for the knee in the plot.) 

Another possible approach to clustering, 
particularly in spatially oriented domains, is to use 
“region growing.” Starting with individual points as 
clusters, each cluster is grouped with the most similar, 
physically adjacent cluster, until there is only one 
cluster. (Sometimes various criteria are applied to 
prevent clusters from being merged if the resulting 
cluster is too “poor.”) This approach can be viewed as 
a form hierarchical clustering which has the constraint 
that clusters can only be merged if the resulting cluster 
is contiguous, i.e., not split into disconnected sets of 
points [Mur95]. 

* *  d2  (X*, Y * )  
T ( X  , y  ) = 1 -  

2n 

However, it is sometimes desirable to have 
clusters that are “piecewise contiguous,” i.e., consist of 
points which are similar, but not all in one contiguous 
region. An example such an approach is presented in 
[Ti1981 and was applied to the problem of land use 
classification based spectral image data. The technique, 
Recursive Hierarchical Image Segmentation, consists 
of alternating steps in which similar, adjacent, regions 
are merged (a region growing step) and similar, non- 
adjacent regions are merged (a spectral clustering 
step). For land use classification, this allows the 
grouping of points, which may represent the same type 
of land cover, but which are in disconnected regions. 
(The K-means approach that we use will automatically 
produce piecewise contiguous regions.) 

Perhaps the work that is most closely related 
to ours is [VivOO), which introduces ACTS (Automatic 
Classification of Time Series), a clustering method for 
remote sensing time series. (The data considered is 
NDVI, the Normalized Difference Vegetation Index, or 
greenness index WASA].) The goal of this work was 
to use clustering as an initial step for deriving 
continental-scale to global-scale vegetation maps. 
After the removal of components with a period of one 
year or less, clustering was also used to group points 
that had similar patterns of inter-annual variation in 
NDVI. However, there was no investigation of the 
relationships between different regions of the land and 
the ocean. 

While there has been considerable research 
into hierarchical clustering and spatial clustering 
[HKTOI], many issues still remain. Some of the new 
issues of zone formation are zonal formation over time, 
the multi-scale nature of the data, and constrained zone 
formation. 

5. Dealing with the Seasonality of Data 
Another important task in our research work is the 
removal of seasonal variation from the time-series data. 
Mostly, earth scientists are interested in non-seasonal 
patterns, instead of the yearly patterns of (Spring, 
Summer, Fall, Winter) or (Rainy Season, Dry Season). 
It is not that these patterns are unimportant, but rather 
that they are well known, and the events of interest are 
deviations from the normal seasonal patterns that 
represent long term cycles, e.g., decadal oscillations, or 
trends, e.g., global warming. Given such a focus, and 
the strength of the seasonal patterns in the data, it is 
necessary to remove them to see other patterns. 

There are several ways to do this and Figure 3 
shows the results of applying two different types of 
transformations (filtering) to a particular time series of 
values. In particular, we focus on a sample time series 
for sea surface temperature. (This time series was 
derived fi-om data corresponding to a %” by %” region 
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Figure 3: Effects of data pre-processing to 
remove seasonal variation. 

of the ocean at 71.5" W, 23" S, just off the Eastern 
coast of South America.) This original time series, 
which clearly has a strong seasonal pattern, is shown 

by Figure 3a. 
While we briefly show the effects of two 

different types of transformations, these issues and 
other time series specific issues are discussed in more 
detail in a related paper [Tan+Ol]. (Among other 
issues, that paper discusses the removal of seasonality 
based the use of DFT (Discrete Fourier Transform and 
SVD (singular value decomposition.) To allow all the 
time series to be displayed on a similar scale, all time 
series were standardized by subtracting off the mean 
and dividing by the standard deviation. 

Moving average. A 12-month moving average is 
effective in removing seasonality and also smoothes the 
data significantly. However, as discussed in [Tan+Ol], 
a moving average increases the magnitudes of the 
observed correlations, and at the same time, makes 
these higher correlations less meaningful. Figure 3 b 
shows the 12-month averaged time series. 

Clusters for Raw SST and Raw NPP 
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Land Cluster 1 

Sea Cluster 1 

Sea Cluster 2 
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Figure 4. Two Ocean (SST) and Land (NPP) Clusters. 



Monthly Z score. This transformation takes the 
set of values for a given month, calculates the mean 
and standard deviation of that set of values, and then 
“standardizes” the data by calculating the Z-score of 
each value, i.e., by subtracting off the corresponding 
monthly mean and dividing by the monthly standard 
deviation. This is slightly different from the usual 
statistical (Z score) standardization of subtracting the 
mean and dividing by the standard deviation, since 
each data point is standardized by using the mean and 
standard deviation of the values for its month, not the 
overall mean and standard deviation. Since it removes 
seasonality (but does not smooth), the monthly Z score 
transformation reduces autocorrelation [Tan+Ol]. The 
result of applying a monthly Z score filter is shown in 
Figure 3c. 

6. Results 
In this section we show the use of clustering 

for detecting different sorts of ecosystem patterns. To 
do this we employ two kinds of diagrams. The first 
diagram shows which points on the globe belong to 
specific clusters by associating each cluster with a 
particular color. The second type of diagram plots the 
cluster centroids. Since the cluster centroids are time 
series, this type of a plot can show various types of 
temporal patterns. For example, for a cluster consisting 
of land points, each of which is characterized by a 
series of monthly NPP values, the centroid of a cluster 
provides a “summary” description of NPP for the 
points in that cluster. 

Finding Seasonal Patterns and Anomalous 
Regions. Figure 4 shows the result of finding two 
clusters for NPP and (separately) finding two clusters 
for SST. (Note that the seasonal component has not 
been removed from this data.) The four clusters 
approximate the northern and southern hemispheres, 
for land and ocean. The plots of the land and sea 
centroids show strong yearly cycles. Interestingly, 
while the northern and southern hemisphere land 
clusters are mostly contiguous, some areas in the 
northern hemisphere, e.g., part of southern California, 
correspond to the “southern hemisphere” cluster and 
vice-versa. These regions correspond to climates, e.g., 
a Mediterranean climate, whose plant growth patterns 
are reversed from those typically observed in the 
hemisphere in which they reside. The existence of 
these anomalous climate regions is well laown, but 
clustering allows them to be easily detected. 

Identifying Connections between Land and 
Ocean Clusters. Another use of clustering is to 
investigate the relationship of various land and sea 
areas. In particular, by finding land and sea clusters 
that are highly correlated, we can identify potential 
teleconnection patterns, i.e., recurring and persistent 

One Sea Cluster and Its Highly Correlated Land Clusters 
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Figure 5: One Sea Cluster and Highly Correlated 
Land Clusters. 

Sea Cluster 19 vs, Land Cluster 56 
4 
2 
0 

-2  

-82 83 84 85 86 87 88 89 SO 91 92 93 94 

Sea Cluster 19 vs. Land Cluster 58 

Ei2 83 84 85 86 87 88 89 SU 91 92 93 94 

Figure 6: Comparison of Cluster Centroids. 
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Figure 7: Comparison of Smoothed Cluster Centroids. 

climate patterns that span vast geographical areas. 
This works as follows. A large number of clusters are 
found for the land (NPP) and the sea (SST), say 100 
for each. Then the correlations between various sea 
and land centroids are calculated, and the land and sea 
clusters with the highest correlations are plotted. 
Figure 5 shows such a diagram for sea cluster ‘19 
(which is a region of ocean off the coast of Japan) and 
land clusters 56 (which consists of parts of Japan and 



Korea, and a region near Pakistan-northwestern India) 
and 58 (which consists of part of China near the coast). 
The NPP centroids of land clusters 56 and 58 are 
correlated with the SST centroid of sea cluster 19 at a 
level of 0.56 and 0.50, respectively. (For this analysis 
we removed seasonal variation by using the monthly Z 
score.) Figures 6 shows a plot of the centroid of sea 
cluster 19 versus the cluster centroids of land clusters 
56 and 58. To better display the overall relationships 
between the centroids, Figure 7 shows the same 
centroids after they have been smoothed using a 12- 
month moving average. 

Unlike the pattern that we found in the 
previous section, the teleconnection pattern displayed 
in Figure 5 between the sea region (sea cluster 19) and 
the land regions (land clusters 56 and 58) is not well 
known to ecosystem scientists. While further 
investigation by ecosystem scientists is needed to 
determine whether these relationships are meaningful 
or not, these clustering results have at least provided 
the basis for an initial hypothesis. In particular, it 
would be interesting to see whether the teleconnection 
between sea cluster 19 and the region near Pakistan- 
northwestern India can be verified, since these regions 
are far apart. 

Sea cluster 19 is highly correlated (-0.77), 
with one of the ocean indices, PDO, which is a long- 
lived El Niiio-like pattern of Pacific climate variability. 
The new hypothesis suggested by this apparent 
teleconnection is that ENS0 (El Nino Southern 
Oscillation) influences hTPP in the Pakistan-India 
region through variations in seasonal rainfall patterns. 
This type of El Nino association with rainfall has been 
noted before for the Indian subcontinent. As the mean 
sea level pressure difference between the south central 
Pacific (e.g. Tahiti) and the Indian Ocean weakens, the 
trade winds can relax, monsoons become weaker, and 
there can be strong drought in India and Australia. This 
relationship was noted as far back as 1904 by Sir 
Gilbert Walker, a British mathematician serving the 
British Colonial Service. However, the monsoonal 
teleconnection pattern to ENS0 events has not been 
consistently strong in recent times, (see F(RC99]), 
which means that more work is required on our part to 
better understand the patterns shown in Fig 5. 

Finding Correlations between Land 
Clusters and (Ocean) Climate Indices. We also 
investigated the land-ocean connection by using 
climate indices that are based on the SST or pressure 
differences, either between two points on the ocean or 
over an area of the ocean (see Table 1). For example, 
some of the indices relate to the El Nino effect. These 
indices are also time series and thus, we can find the 
clusters on the land and sea that display a strong 
correlation to a particular index. Figure 8 shows the 
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Figure 8: Clusters that are Highly Correlated 
with Climate Indices 

land and sea clusters that correlate highly (positive or 
negative correlation of 0.5 or above) to three different 
climate indices: PDO (Pacific Decadal oscillation) and 
two El Nino indices, ANOM 4 and ANOM 1+2 [INDl, 
IND21. For this analysis we removed seasonal variation 
by using the monthly Z score. The ocean regions that 
are highly correlated with the two El Nino indices are 
related to the regions used to define the two indices. 

To illustrate the potential for clustering to find 
interesting teleconnections between land and ocean 
regions, note that there is a land cluster near 
Zimbabwe, in southern Africa, which is highly 
correlated to the ANOM 1+2 index. A connection 
between southern African rainfall and the El Nino 
phenomenon has been observed. For instance, 
Ropelewski and Halpert [RH961 have shown a positive 
correlation between the southern Oscillation Index 
(SOI) (another El Nino related climate index) and 
southern African rainfall. More specifically, the 
droughts which have occurred in southern Africa since 
the end of the 1960s are associated with warmer 
temperatures in the eastern and central tropical Pacific, 
in the tropical Indian Ocean, and in the equatorial 
Atlantic. The spatial structure of these anomalies may 
be associated with El NinoLa Nina events. 

7. Conclusions 
A key conclusion of this paper is that clustering can 
play a useful role in the discovery of interesting 
ecosystem patterns. The patterns revealed by the 
clusters and their associated (centroids) time series are 
sometimes well known, e.g., the yearly seasonal 
variation of Figure 4. However, we have also started to 
investigate how clustering might be used to discover 
previously unknown relationships between regions of 
the land and sea. In this effort, we have focused on 
climate indices, which are time series of temperature or 



pressure that correlate well with certain regions of the 
ocean from which they are derived. In particular, we 
have looked at which regions of the land are most 
highly correlated to these centroids. So far the 
ecologists on our team have found the results 
interesting and have recognized some familiar patterns. 
One challenge is to find techniques to automatically 
select interesting patterns and eliminate spurious ones. 

To produce meaningful clusters it is necessary 
to take into account the spatio-termporal nature of the 
data. Seasonality must be removed by using 
appropriate pre-processing steps if non-seasonal 
patterns are to be detected, and there are significant 
issues concerning what levels of correlation between 
time series indicate significant connections. However, 
on positive side, it is likely that the simple K-means 
clustering approach we are using works as well as it 
does because of the high level of spatial auto- 
correlation in the data. Otherwise, the clusters 
produced by K-means might consist of a large number 
of widely separated small regions. The use of clusters 
that are only piecewise contiguous has not been a 
problem so far, although much of the evaluation 
proceeds via visualization and people are good at 
noticing interesting patterns and ignoring noise. The 
chief insights come when the clusters consist mostly of 
large, coherent areas, although, in such cases, the 
exceptions to the rules can also be interesting as with 
the case of Figure 4 and southern California. 

In clustering, there are a number of 
opportunities for future research. For instance, we 
could try other similarity measures, e.g., Euclidean 
distance or the cosine measure. We could also try the 
other clustering approaches mentioned in Section 4 or 
variants of K-means, e.g., bisecting K-means [SKKOO]. 
Along somewhat different line, we may want to look at 
clusters that vary over time or we may want to try to 
define clusters in t e r n  of events. (However, for some 
transformations of the data, e.g., the monthly Z score, 
we are in some sense already looking at events, i.e., 
deviations from the norm.) Also, our current clustering 
approach only looks at the time series for one variable 
for each point. This is a potential limitation in terms of 
the goodness of the clusters and their suitability for 
predicting the behavior of one region (cluster) based on 
the time varying behavior of another region. 

Other limitations in our approach result fiom 
the fact that often, only extreme events that are 
correlated. For example, the El Nino indices have 
values for each month of each year, but the effects of 
El Nino on other regions often occur only when the 
index has an extreme value, Le., when an El Nino 
effect is actually occurring. Although there may be a 
number of possible ways to address these problems and 
make the clustering more effective, it seems likely that 

some patterns will best be detected by other data 
mining techniques that are naturally more event-based, 
e.g., association rules or co-location rules. 
Nonetheless, we are hopeful that our clustering 
approach, and any improvements that we make to it, 
will continue to produce interesting and useful results. 
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ABSTRACT 
The Information Technology and Systems 

Center (ITSC) at the University of Alabama in Huntsville 
developed the Algorithm Development and Mining 
(ADaM) system under a research grant from NASA to 
investigate new methods of processing large volumes of 
Earth Observing System @OS) remote sensing data sets. 
This system provides howledge discovery and data 
mining capabilities for data values as well as for metadata, 
and catalogs the information discovered. ADaM 
incorporates algorithms for detecting a variety of 
geophysical phenomena to address the needs of the earth 
science community. This data mining system has been 
used for other research studies dealing with topics such as 
texture classification, image processing and statistical 
analysis of earth science data sets. This paper will provide 
a detailed description of the ADaM system architecture, 
design, components, client interface and the processing 
environment. It will also describe the future directions that 
ITSC intends to pursue with ADaM. 

Keywords 
Data Mining, ADaM, Content Based Search, ERSS, 
Mining Plan Builder 

1 a INTRODUCTION 

Designing a data mining system for Earth Science 
applications is complex and challenging. The issues that 
need to be addressed in the design are (1) variability of 
data sets, (2) operations for extracting information, and (3) 
providing the capability to the user to write complex 
mining plans. Earth Science data sets not only come in 
different formats, types and structures; there are also many 
different states of processing such as raw data, calibrated 
data, validated data, derived data or interpreted data. The 
mining system architecture must be designed to be flexible 
to handle these variations in data sets. The operations 

required in the mining system vary for different 
appIication areas within Earth Science. Operations could 
range from general-purpose operations such as image 
processing techniques or statistical analysis to highly 
specialized, data set-specific science algorithms. The 
mining system architecture should be flexible in its ability 
to process new data sets and incorporate new operations 
without too much effort. The design of the architecture 
should also allow other users to build new clients to utilize 
such a system. The Information Technology and Systems 
Center at the University of Alabama in Huntsville 
originally developed the Algorithm Development and 
Mining (ADaM) system under a research grant from 
NASA Headquarters Research Announcement (NU) to 
investigate new methods of processing large volumes of 
Earth Observing System (EOS) remote sensing data sets. 
ADaM is designed to handle the complexity of mining 
Earth Science data [ 1,2]. It can process heterogeneous data 
sets and allows users to add research problem-specific 
science algorithms to the system. 

This paper will discuss issues that had to be considered in 
designing a flexible system architecture. It will describe 
the ADaM system and its user interface as an example of a 
flexible design. This paper will also describe the research 
directions that are evolving from this innovative 
architecture. 

2. DESIGN ISSUES 

As stated in the introduction, several issues had to be 
considered while designing a flexible mining system for 
Earth Science. These are: 

2.1 Data Handling Capabilities 

Earth Science data introduces complexity in designing, 
building and utilizing a data mining system, because these 
data sets can be quite varied. They can be point data 
collected by a meteorological instrument, swath or grid 
data collected by satellites, or volume scan data collected 
by weather radar. The formats of these data sets also vary 
from simple binary or ASCII files to more complex 
structures such as Hierarchical Data Format for the Earth 
Observing System (HDF-EOS). The spatial and the 
temporal resolutions of these data sets depend upon the 
measuring instrument and the platform. The spatial 
resolution could vary from hundreds of kilometers to a few 
meters. The temporal range of a data file could vary from 
15 minutes to a day or longer. Temporal resolution could 



vary from instantaneous measurements to accumulation of 
data over some period. To utilize mining techniques over 
the broad range of data sets, the mining system had to be 
designed to handle these types of data set variations. 

2.2 Addition of New Algorithms 

In certain circumstances, a known scientific algorithm can 
be utilized to extract the information needed from data 
sets. Detecting Mesoscale Convective Systems (MCS) 
from SShUI data utilizing the Devlin [3] algorithm is one 
such example. The data mining system had to be designed 
to be flexible enough to allow not only data set specific 
algorithms but also other new algorithms to be added to it 
without affecting the other operations. 

2.3 Allow Scientists to Select and 
Sequence Different Operations 

The Mining system also needed the capability to allow 
scientists to create their own mining plans. A mining plan 
is a sequence of specified steps, where each step is a 
processing operation. The scientist should be able to piece 
together different operations/algorithms to reach their goal. 

3. ADaM SYSTEM FEATURES 

The ADaM system was designed using the latest object 
Oriented techniques to achieve a high degree of portability, 
accessibility and modularity. The implementation in 
standard C t t  allows the system to run on multiple 
operating systems including IRE, Linux, and Microsof? 
Windows NT. One of the design goals was to have ADaM 
work at both data archive centers or on a user’s desktop 
workstation. 

3.1 Overview of the Architecture 

The ADaM data mining system has been designed to 

extract content based metadata from large Earth Science 
data archives. It can detect phenomena or events that are of 
interest to scientists and then store this information in a 
way that facilitates the data search and order process. 
Some mining results are stored in Event/Relationship 
Search System @/RSS), an ITSC-developed spatial data 
search engine used to find coincidences between mining- 
generated phenomena, climatological events and static 
information such as country and river basin boundaries [4]. 
The data mining engine also provides other data ordering 
related capabilities such as subsetting and custom data 
product generation through specialized client applications. 
Custom processing may include gridding, resampling, 
filtering, format conversion, or other analysis depending 
on the needs of the customers. For example, ADaM can 
generate a monthly total rain accumulation image from 
radar reflectivity data. Both the E/RSS and custom 
processing client are web applications, so the clients are 
capable of running in almost any environment. Figure 1 
depicts a generalized view of how the ADaM data mining 
architecture has been utilized. This architecture allows the 
clients to communicate to the system in a variety of ways 
such as: (1) The miner engine can be driven directly via 
local scripts or an interactive console session, (2) A web 
application can guide the user in creating mining plans, 
which execute the mining engine, (3) A network 
application can submit mining plans via the miner daemon, 
and (4) The system may also be used as a library with the 
application directly linking to the individual operations 
needed. 

3.2 Processing Flow 

The ADaM system architecture is based on a processing 
stream, in that mining is broken down into a series of steps 
with results from each step passed to the next one in line. 
Figure 2 illustrates both ADaM’s data processing stream, 
as well as the three basic types of modules: input, 
processing, and output. The use of data input filters, 
specialized for a variety of data types, has been 
instrumental in simplifying the development of the 

Execute I 
Direct 
Hooks 

Figure 1: Multiple Process Flows Utilizing the ADaM Data Mining Architecture 



processing and output operations. The selected input filter 
translates the data into a common internal structure so that 
the processing operations can all be written for a single 
data representation. 

Figure 2: Schematic diagram depicting the 
stream of a mining system 

This allows the addition of new operations to the system 
without having to address input data format problems. 
Similarly, the addition of a new input filter provides access 
to the entire suite of processing operations for the data type 
in question. This design feature allows ADaM to handle 
heterogeneous Earth Science data sets. The mining system 
currently allows over 120 different operations to be 
performed on the input data stream. These operations vary 
from specialized atmospheric science data set specific 
algorithms to generalized image processing techniques. 
The last step in the mining process is the selection of the 
input modules, the output filters effectively insulate the 
processing operations from having to support ail the 
possible output formats. 

output format. Since the input data has been converted to 
ADaM's internal format, the output modules allow the user 
the option to select either the input format or a different 
format for the final data product. In the same manner as 

3.3 Components 

In order to allow for the distributed use of the data mining 
functionality, the ADaM system was designed as a client- 
server architecture, which supports remote client 
applications communicating with the data mining server. 
This allows the server system to be co-located with 
archived data stores while being driven by either remote or 
local clients. In support of this architecture, the ADaM 
data mining system is composed of the mining engine and 
mining daemon, both located on the server. The daemon 
supports a specific protocol of messages and listens on a 
configured port for instructions from client applications. 

Through instructions from the client, the daemon is 
responsible for managing user access information, file 
management operations and job scheduling and 
management. The daemon ultimately sends the correct 
information and directions to the engine in the form of a 
"mining plan" for actual processing. A software interface 
layer was created providing tools to assist client 
application developers in communicating with the mining 
daemon across network sockets. Figure 3 depicts the 
connections between the components of the ADaM client- 
server architecture. Each component performs a specific 
well-defined task, and therefore the components 
themselves may be replaced or updated provided that the 
new components conform to the same interfaces. 

Figure 3:  AdaM Data Mining Server Components 



3.3.1 Mining Engine: 

The Mining Engine is the software component that 
manages the processing of data through a series of 
specified operations. The input, processing and output 
modules are dynamically loaded as needed at execution 
time, and this allows for the addition of newly developed 
modules without the need to rebuild the engine. The 
mining engine interprets a mining plan script that provides 
the details about each specified operation and the order 
that they should be executed. Other communication with 
the mining engine is managed through the mining daemon 
process. 

3.3.2 Mining Daemon: 

The Mining Daemon is the gateway to the mining engine. 
All network communications with the mining system are 
handled by the daemon through a message handling 
protocol. Upon installation the daemon is configured to 
listen on a specific port for any socket communications. 
The daemon is capable of handling a fairly rich set of 
messages that allows it to perform file management duties, 
command the mining engine and provide user security 
screening. The daemon can also determine at run time 
which processing modules are available on the server. 

3.3.6 Mining Plans : 

3.3.3 Mining Database: 

The database component is used to store information that 
is required for the smooth operation of the system and the 
interaction of its components. This information includes 
the names, locations and related metadata for input data 
sets available on the server. It also includes information 
about users, jobs, mining results, and other related 
information. A relational database is currently used for this 
task. Access to the database is provided by the daemon. 

3.3.4 Mining Scheduler: 

The scheduler component examines the list of jobs to be 
executed on the server and determines which job or jobs to 
execute at any given time. The scheduling policy used can 
be unique to each server. The scheduler invokes the 
mining engine for each job and monitors its progress, 
updating the job status in the database whenever it 
changes. 

3.3.5 Operations and Data set InpdOutput 
Filters: 

Each of the operations and data set filters is implemented 
as a shared library. The libraries are loaded dynamically by 
the mining engine, which means that new modules may be 
added to the system without recompiling or relinking. Each 
of the operations and filters is completely independent of 
all the others. All operations and filters either produce or 
operate on a common format representing scientific data. 
This design feature allows science specific algorithms to 
be incorporated into the system with relative ease. 

The mining plan script conveys the processing instructions 
to the mining engine. The plan contains the number and 
sequence of processing steps as well as the detailed 
parameters (tokens) describing how to perform each step, 
such as where to find the input data, where to store the 
output and configuration parameters for all the various 
operations. Mining plans may be created using the mining 
plan editor. Since mining plans are text files, they may also 
be created using any text editor. It is easy for applications 
to write mining plans. The mining plan begins with a 
number indicating the number of operations in the plan. 
The remainder of the plan is a series of tokedvalue pairs 
where the tokens and values are delimited by newlines. 

4. ADaM PLAN BUILDER CLIENT 

In order to allow users to build complex mining plans, 
ITSC has designed an easy to use and functional user 
interface called the ADaM Plan Builder. This user 
interface is a client that communicates directly to the 
mining engine. It makes it easier for the user to select the 
right operation for the task and to provide values for the 
parameters for that operation. The individual ADaM 
operation documentation is written in XMLTM[5]. Since 
this standardizes the documentation, the Plan Builder 
written in Java parses and utilizes the information 
contained in those XML files. Thus, the Plan Builder 
Interface utilizes these XML files to provide the user 
options on the operations available, what parameters each 
operation requires, the meaning of each parameter, default 
values for those parameters and finally a sample mining 
plan. Through the Plan Builder, users can select sample 
operation steps and modify the values for the parameters 
according to their needs. The ADaM Plan Builder allows 
the user to chain together complex mining plans for 
scientific research. 

The Plan Builder also allows the users to edit and modify 
the Mining Database. The user can feed the metadata 
information about the data files to be mined into the 
database via this client. The database then automatically 
selects the correct files for mining based on the time range 
given. The architecture of the Plan Builder is shown in Fig. 
4 and a screen capture of the interface is shown in Fig. 5. 

5. RESEARCH DIRECTIONS 

ADaM is currently undergoing a metamorphosis in the 
sense of becoming uncoupled from an environment that is 
dependent on centralized processing on a single server 
platform with the availability of local data. The following 
sections describe some of the efforts underway to migrate 
ADaM into a highly distributed environment that will 
provide broader access to the system and distributed 
heterogeneous scientific data sets, while addressing 
improved scalability and flexibility. 
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Fimre 4: ADaM Plan Builder Functional Diagram 

Figure 5: Screen capture of the ADaM Plan Builder Interface 

5.1 Distributed Mining 5.2 Grid Mining 
lTSC is currently investigating and prototyping emerging 
distributed component technologies. To address the use of 
distributed mining services and access to distributed data 
sets. The use of distributed mining services opens the 
system to greater possibilities of extensibility, 
performance, scalability and reliability by distributing the 
processing burden and lessening the possibility of 
centralized points of system failure [6]. Current research 
efforts have been successful with the development of an 
Earth Science Markup Language [http://esml.itsc.uah.edu] 
that will make great strides towards realizing generic 
access to heterogeneous data sets [fl. The integration of 
ESML technology with planned distributed mining 
components is expected to result in a virtual processing 
environment that capitalizes on improved networking 
bandwidth and under-utilized distributed processors. 

Another approach to distributed mining is also being 
prototyped in the form of Grid Mining. ITSC researchers, 
in collaboration with NASMAmes researchers, have been 
successful with implementing and testing the ADaM 
system on the NASA Information Power Grid [SI. The 
Grid approach employs a sophisticated infrastructure of 
message passing, scheduling and security in an effort to 
utilize large capacity processing and data centers for 
scientific research. This approach to distributed data 
mining promises to be of particular benefit to scientific 
researchers in need of massive processing and data 
resources. 

5.3 Mining Onboard Space Craft 

ITSC is also investigating and developing an innovative 
processing system capable of handling the unique 

http://esml.itsc.uah.edu


constraints and characteristics of the on-board satellite data 
and information environment. The EnVironmEnt for On- 
Board Processing (EVE) system will serve as a proof-of- 
concept of advanced information systems technology for 
remote sensing platforms [9]. EVE’S on-board, real-time 
processing will provide capabilities focused on the areas of 
autonomous data mining, classification and feature 
extraction. These will contribute to Earth Science research 
applications, including natural hazard detection and 
prediction, fusion of multi-sensor measurements, 
intelligent sensor control, and the generation of customized 
data products for direct distribution to users. EVE is being 
engineered to provide high performance data processing in 
a real-time operational environment. A ground-based 
testbed is being created to provide testing of EVE and 
associated Earth Science applications in a heterogeneous 
embedded hardware and software environment. 

6. CONCLUSION 

ADaM has proven to be an effective and valuable tool to 
mine Earth Science spatial data [10,11]. Its flexible 
architecture design has made it possible for ADaM to 
handle the multiple formats, scales, resolutions and large 
granule sizes typical of spatial data for many different 
science problems. The design permits the easy addition of 
new algorithms, especially domain-specific science 
algorithms. The ability of the user to create complex 
mining plans by chaining together different operations is 
also possible because of the flexibility of the architecture. 
ITSC plans to utilize its experience in designing ADlM to 
meet the scientific mining requirements of the next 
generation of scientists in several other domains. Research 
efforts are focused towards distributed mining across the 
web; mining large volumes of data on the Information 
Power Grid; and finally designing a system that would be 
used onboard aircraft or spacecraft to extract features or 
phenomena as soon as they are sensed by the instrument. 

7. 
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ABSTRACT 
Extra-tropical cyclones (ETCs) are responsible for severe 
and highly damaging winter weather over North America 
and western Europe; they cause the second largest insur- 
ance loss due to weather, after tropical cyclones. On the 
positive side, they are also the primary source of water for 
much of the western United States. Historical observational 
data, as well as simulated general circulation model data, 
provide atmospheric scientists with the opportunity to bet- 
ter understand and predict the dynamics of ETCs and their 
interaction with other local and global meteorological pro- 
cesses. In this paper we describe our recent work on using 
mixtures of regression models as a general framework for 
clustering spatio- temporal trajectory data; and specifically 
in this context, the clustering of ETC trajectories. The steps 
necessary to analyze such data are described, including pre- 
processing, detection and tracking of cyclones, and (finally) 
clustering. We discuss the end-to-end process of data analy- 
sis in this context as well as preliminary results on obtaining 
E,TC clusters and their interpretation from a scientific per- 
spective. 

1. INTRODUCTION 
With the increasing availability of massive observational and 
experimental data sets (across a wide variety of scientific 
disciplines) there is an increasing need to provide scientists 
with efficient computational tools to explore such data in 
a systematic manner. For example, in astronomy, tech- 
niques such as classification and clustering are widely and 
successhdy used to organize stellar objects into groups and 
catalogs-which in turn provide the impetus for further sci- 
entific hypothesis formation and discovery [l], [Z], 131. 

Data-driven exploration of massive spatio-temporal data sets 
is an area where there is particular need of such computa- 
tional tools. Scientish are overwhelmed by the vast quan- 

tities of data which simulations, experiments, and observa- 
tional instruments can produce. For spatio-temporal data, 
investigators are typically not primarily interested in raw 
grid-level data, but rather in higher-level phenomena and 
emergent processes which drive the data such as the tem- 
poral and spatial evolution of specific localized structures of 
interest. Examples include trajectories of birth-death pro- 
cesses for vortices and interfaces in fluid-flow experiments, 
extra-tropical cyclones (ETCs) from sea-level pressure data 
over the Atlantic and Pacific oceans, and sunspot shape and 
size evolution over time from hourly images of the solar pho- 
tosphere. The ability to automatically detect, cluster, and 
catalog such objects can in principle provide an important 
"data reduction front-end" to convert four-dimensional data 
sets (one temporal and three spatial dimensions) on a mas- 
sive grid to a much more abstract representation of local 
structures and their evolution. In turn, these higher-level 
representations can provide a general framework and basis 
for further scientific hypothesis generation and investigation, 
such as investigating correlations between local phenomena 
and global trends (e.g., how storm paths are related to hemi- 
spheric geopotential regime patterns). 

In this paper we describe preliminary results on clustering 
of objects into K groups based on observed spatio-temporal 
trajectories with application to clustering of extratropical 
cyclones (ETCs). Existing automated tools for clustering 
and classification have been largely based on the so-called 
feature-vector representation of an object. Concatenating 
measurements such as object brightness, shape, and size 
yields a vector which can be viewed as existing in a Eu- 
clidean space. Useful notions such as distance, similarity, 
decision boundaries, prototypes, and clusters then spring 
forth from the natural geometry of this space. 

Feature-vector methods, however, have significant limita- 
tions when applied directly to trajectories (e.g., by repre- 
senting a sequence of T position measurements (xt, yt) as a 
vector of length ZT). For example: 

By lumping all measured attributes together the vec- 
tor representation loses information about locality in 
space and time. (For example, smoothness of object 
trajectories is lost.) 

c Different objects have trajectories of varying lengths 
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T and may evolve at different time-scales and involve 
various birth-death mechanisms. 

Feature-based models are unable to model systemati- 
cally the relationship of the object’s spatial evolution 
to features such as size, shape, and velocity. 

MODEL-BASED CLUSTERING OF TRA- 
JECTORIES USING FINITE MIXTURES 

We have developed a general framework for clustering tra- 
jectories using probabilistic mixture models of dynamic -sys- 
tems which can systematically handle the above issues in 
a principled manner. In [4] we described a general proba- 
bilistic framework for clustering individual objects given ob- 
served trajectory data. The key idea is to use a generative 
probabilistic model for each trajectory, and to address the 
trajectory clustering problem by hypothesizing that each ob- 
served trajectory is being generated by one of K such mod- 
els. Formally, we have a finite mixture of IC components, 
where each component model describes a particular class of 
trajectories. It is straightforward to show that, given the 
functional form of the trajectory models, one can use the 
Expect at ion- Maximizati on algorithm to infer the parame- 
ters of the K models given a set of N trajectories [5] .  

In addition one can estimate posterior probability of mem- 
bership in each group for each object [6], [7]. This pro- 
vides a coherent and sound mechanism for clustering objects 
based on their observed dynamic behavior, and provides a 
principled and straightforward framework for issues such as 
handling trajectories of different lengths, coupling of input 
or covariate information (e.g., [SI), etc. Furthermore, the 
probabilistic formalism can be used to objectively guide the 
selection of the best model to explain the data, enabling 
search over different underlying dynamic model structures 
as well as search for the best value of I< (e.g., [a], 691, [SI). 

3. SCIENTIFIC BACKGROUND ON EXTRA- 
TROPICAL CYCLONES (ETCS) 

The primary application of trajectory clustering that we 
have investigated up to this point is the clustering of ETC 
tracks from meteorological data. ETCs are important for 
a number of reasons. They are responsible for severe and 
highly damaging winter weather over North America and 
western Europe. They are also the primary source of water 
for much of the western United States. 

Atmospheric scientists are interested in the spatio-temporal 
patterns of evolution of ETCs for a number of reasons. It 
is not well-understood how long-term climate changes (such 
as global warming) may influence ETC frequency, strength, 
and spatial distribution. Given the significant impact of 
ETCs (both from a potential damage viewpoint, and as 
mechanisms for water supplies), there is significant moti- 
vation to be able to understand the potential correlation of 
climate change with patterns of ETC occurrence. Similarly, 
changes in ETC patterns may provide clues of long-term 
changes in the climatic processes that drive ETCs. The 
links between ETCs and local weather phenomena are also 
of interest: clearly ETCs have significant influence on local 
precipitation, and in this context a better understanding of 
their dynamics could provide better forecasting techniques 

both on local and seasonal time-scales. Furthermore, an ex- 
plicit model of ETC evolution can serve as an intermediate 
link between global atmospheric phenomena (e.g., geopo- 
tential height patterns and regimes) and local “weather- 
related” phenomena such as precipitation, addressing the 
long-standing problem in atmospheric science known as “down- 
scaling” (i.e., how to link and model global-scale and local- 
scale phenomena in a coherent manner). 

4. PRIOR WORK ON CLUSTERING ETC 
TRAJECTORIES 

A useful starting point for modeling ETCs is to try to iden- 
tify different subclasses of ETCs based on their observed 
trajectories. The work of Blender et a1 in [lo] is illustrative 
of the use of conventional clustering techniques in atmo- 
spheric science for clustering in this context. Using sea-level 
pressure data on a grid over the North Atlantic (measure- 
ments every 6 hours, available over several winters) Blender 
et a1 detect local minima in the pressure map and then use a 
nearest-neighbor tracking algorithm (forward in time, with 
some spatial distance constraints) to connect up the minima 
in successive maps and determine trajectories. The trajec- 
tories are then converted into a fixed-dimensional vector for 
clustering by the k-means algorithm: Blender et al require 
their storm trajectories to be exactly 3 days in length, result- 
ing in 12  (z, y) pairs which are converted to a 24-dimensional 
vector, one per trajectory. Based on subjective analysis 
of the data, L = 3 clusters are chosen and fit in this 24- 
dimensional space. Despite the somewhat ad hoc nature of 
the approach the resulting clusters demonstrate that storms 
in the North Atlantic clearly cluster into different types of 
trajectory paths. Blender et a1 use the resulting clusters to 
then classify each day into the cluster of the dominant tra- 
jectory path for that day and analyze the regional average 
pressure maps (or “regimes”) for each set of days. 

5. EXPERIMENTS WITH MIXTURE-BASED 

To begin the examination of the utility of our model-based 
clustering techniques with ETC trajectories, we used sev- 
eral simulation datasets and analyzed them using a some- 
what simple scheme based on our general framework. The 
datasets that we are working with are part of the CCM3 
AMIP I1 simulation data model m s .  Specifically, we have 
data for the winter months (November to April) from 1980 
to 1985 that give mean sea-level pressure (MSLP) measure- 
ments on a 2.5’ x 2.5’ grid over the earth every 6hrs. Of 
course, since we are interested in ETCs over the North At- 
lantic we focused on the area between 30”N-70°N and SOOW- 
10’E. As an extra step, the data was preprocessed to filter 
out the long term effects in the measured field. 

CLUSTERING OF ETCS 

Our primary interst is in the clustering of cyclone trajecto- 
ries. However, we must first discover, or track, the cyclones 
from the raw MSLP data before we can proceed with this 
step. 

5.1 Finding the Minima 
Following the lead of Blender et a1 in [lo], we begin our cy- 
clone tracking scheme with a minima finding process. iln 
important aspect of the approach of employing dynamic 
models for cyclone tracking is that we must be able to track 
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F i g u r e  1: A single generated cyclone trajectory.  T h e  l ine in  t h e  figure connec t s  t h e  ‘*’ symbols  a long t h e  
t ra jec tory  t h a t  represent  t h e  min ima  t h a t  were t racked as part of t h i s  cyclone. T h e  background image 
represents  t h e  MSLP data at t h e  t i m e  t h e  cyclone is centered at t h e  far r ight  ‘*’. 

cyclones in continuous state-space. Of course this means 
that we cannot limit the possible locations of tracked cy- 
clones to the grid upon which the MSLP data is measured. 
As such we investigated the inclusion of an interpolation 
scheme into the minima finding process so that we could 
afford the tracking of cyclones in continuous state-space. 

We use a bicubic interpolation method coupled to an iter- 
ative scheme to fmd minima using simple gradient descent. 
First we scan all of the frames (the MSLP data slices) over 
time and find all of the local minima using a simple sliding 
neighborhood method. We declare a ‘Lpixel” to be a t  a local 
minimum if its value is less than all eight of its neighbors. 
Then we use a simple gradient descent with bicubic interpo- 
lation to descend to the point “inside” of the pixel that is 
at an approximate minimum. This point then gives us our 
approximate off-grid center of a candidate cyclone. 

5.2 Tracking the Cyclones 
We then take the candidate cyclone centers from above and 
complete the following two steps to complete the tracking. 

First we scan the frames sequentially from beginning to end 
and look a t  each candidate cyclone center to attempt to as- 
sociate it with a candidate cyclone center from the previous 
frame. If there exists a center within some small neighbor- 
hood region in the previous frame surrounding a center in 
the a m e n t  frame, then we link them. If there does not ex- 
ist an associate in the previous frame, then we designate the 
candidate center in the current frame to have been newly 
“born.” 

In the second step, we take the set of associated centers 
over time and eliminate all those that exist for less than 
three days-this removes many small, noisy tracks that cor- 
respond to local, small-scale weather disturbances not usu- 

ally considered to be cyclones. The remaining set of asso- 
ciated centers are taken to be actual cyclone trajectories or 
tracks. 

Figure 1 shows an example of a single trajectory that was 
generated from the above steps. The image shown displays 
the MSLP data at the instant in time when the cyclone is 
at the far  right of its trajectory. 

6. CLUSTERING TRAJECTORIES 
An obvious way that one might go about clustering tra- 
jectory data is to take all of the nJ measurements for an 
individual and form a vector y, of dimension nj. Assume 
for the moment that each individual has the same number 
of measurements (i.e., n j  = n for all individuals j) and these 
measurements were all taken a t  exactly the same x values. 
We can then treat the set of y, trajectories as a set of n- 
dimensional vectors in an n-dimensional space and use any 
of a variety of the many clustering methods which operate 
in vector-spaces. 

While this may be a reasonable approach in some applica- 
tions, it wil l  not always be applicable or appropriate. For 
many data sets, the trajectories will be of different lengths 
and may be measured a t  different time points. In addition, 
the y measurements may be multidimensional (e.g., 3d posi- 
tion estimates in tracking the dynamics of a moving object), 
in which case there is no natural vector representation. 

Perhaps more fundamentally, if one converts the data to a 
vector representation there is a fundamental loss of informa- 
tion about the data, Le., if we believe from the underlying 
physics of the data-generating process that the y’s are a 
smooth function of the z’s, then this smoothness informa- 
tion is lost when we convert a sequence of n numbers to 
an n-dimensional vector of numbers. Thus, intuitively, re- 



taining the notion of trajectory smoothness in our clustering 
procedure, should generate better data models compared to 
throwing away this information. 

Thus, we employ a model-based clustering of trajectories, 
where each cluster is modeled as a prototype function with 
some variability around that prototype. A distinct feature 
of this model-based approach to clustering is the fact that it 
produces a descriptive interpretable model for each cluster. 
Since we are estimating smooth functions from noisy data 
it is natural to use a probabilistic framework. 

7. PRELIMINARY RESULTS ON CLUSTER- 

In this section we describe some preliminary clustering ex- 
periments using linear regression mixture components in our 
mixture (see the Appendix) with the cyclone tracks that 
were obtained from the techniques detailed in section 5.2 .  
On average, there were about 50 cyclones tracked each win- 
ter over the North Atlantic, some lasting 3 days, others last- 
ing as long as 6. For the sake of simplicity here, we only show 
results for the 1981-82 winter and we set the number of com- 
ponents in the mixture model to 3. Of course, as we stated 
earlier, we could learn the optimal number of components 
in the mixture in a principled manner if we so desired. 

ING CYCLONE TRAJECTORIES 

In Figure 2 we see the results of this clustering. The top 
graph shows all of the tracks from the 1981-82 winter that 
were discovered. The remaining three graphs in the figure 
show the three resulting clusters. We can see that there 
appears to be one cluster of cyclones moving rapidly north- 
to-northeast (third from top), another moving more slowly 
northeast (second from top), and another one moving in an 
east-to-northeast direction (bottom). 

One nice benefit of our probabilistic framework is that we 
can easily and naturally build extensions into our model 
such as the addition of a background, catch-all, cluster that 
“soaks up” tracks that appear not to belong to any other 
particular group. In Figure 3 we see some preliminary re- 
sults when this type of background cluster is added to the 
framework. As before, three groups are fit to the data, but 
in addition a fourth background cluster that has fixed pa- 
rameters is added to the mix. This fourth cluster has mean 
corresponding to the population mean curve and large vari- 
ance: it is intended to “attract” particularly noisy trajec- 
tories that are not well fit by any other components. The 
mixing weight for this cluster is, however, estimated from 
the data during the application of the EM procedure. The 
resulting background cluster is shown in the bottom graph 
of Figure 3, and the three remaining clusters are shown in 
the other three graphs. It appears from this figure that the 
algorithm was able to return tighter clusters by placing sus- 
pect tracks into the background. 

8. ONGOING WORK 
We are investigating a general framework for clustering tra- 
jectories using probabilistic models of dynamic systems which 
allows one to overcome limitations of simpler feature-vector 
methods. As a first step we looked at mixtures of simple 
regression models and applied these ideas to the problem of 
clustering ETCs. With the clustering of ETCs, one must 
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Figure 2: Preliminary results of cyclone clustering 
using 3 linear regression components. The top graph 
shows all of the tracks that were provided to the 
clustering algorithm, the other three graphs show 
the three resulting clusters. 
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Figure  3: Prel iminary results of cyclone cluster ing 
using 4 l inear regression components  w i t h  a s ingle  
background cluster.  T h e  b o t t o m  g raph  shows t h e  
background cluster ,  while  t h e  o t h e r  t h r e e  show t h e  
t h r e e  remaining clusters. 

also solve the initial problem of tracking the cyclones them- 
selves before the clustering can begin. It is apparent that 
the tracking itself can be very noisy, and one can easily ded- 
icate a large amount of time perfecting such a technique. Of 
course, this is not our intention since our primary goal is 
to investigate clustering algorithms for objects whose tracks 
are already known. Nonetheless, one can identify many cir- 
cumstances, such as merging trajectories, where there is con- 
siderable ambiguity in the tracking process. Since these tra- 
jectories are the basis for the clustering work, if the tracks 
themselves are tainted (e.g., noisy), then the clustering will 
be unstable or non-informative. 

A potentially useful general idea is to integrate the tracking 
withthe clustering. In this framework the tracking will drive 
the clustering, but also the clustering will drive the tracking, 
i.e., both tracking and clustering will be coupled and esti- 
mated jointly, which is inherently more optimal compared 
to carrying out each estimation separately. 

Other future work can focus on several different aspects of 
the problem. For example, one important aspect is the abil- 
ity to integrate better component models into the process 
that allow for the modeling of dynamic behavior, such as 
AR models or Kalman filters. This will allow the modeller 
more power in the clustering of trajectories into their respec- 
tive groups. Furthermore, extensions like the integration of 
shape and velocity information into the clustering process 
might also provide some benefits. In preliminary work to 
date we have found that the AR and Kalman filter mod- 
els appear to be significantly less stable (from a parameter 
estimation) viewpoint) than the simpler regression models; 
thus, it may be that the resolution of the ETC trajectory 
data is not sufficient to allow accurate modeling of this na- 
ture. 

Lastly, the evaluation of these techniques against other base- 
line methods is also important (e.g., comparison with K- 
means or Gaussian mixtures). Although these evaluations 
would be worthy of investigation, they are non-trivial to 
carry out since vector-based methods (such as k-means) 
don't directly handle variable length trajectories measured 
a t  different times. However, one can resort t o  truncation 
and/or other techniques to deal with this problem. 

Appendix: Mathematical Background 
We can define a probabilistic cluster model for sets of tra- 
jectories as follows. Let our data set S consist of raj mea- 
surements for each of M individuals, l < j 5 M .  We will 
refer to these measurements as being a function of time (i.e. 
x is synonymous with time), although this is not strictly 
necessary. Let the trajectory of measurements for the j t h  
individual be denoted as yj, with the ith measurement of vj 
denoted as yj(i). Furthermore, suppose that the trajectory 
of measurements yj were taken at the times in xj. Finally, 
let each trajectory in S belongs to one of hr groups. 

The probability of observing a particdar measurement yj(i) ,  
given z j ( i )  and component model k, is defined as 
jh{yj(i)lxJ(z),Ok), and is assumed to be a conditional re- 
gression model. We can then define the probability of a 
complete trajectory, given a particular component model k 
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Here we make the standard regression assumption that, con- 
ditioned on the model and the s values (and, thus, the means 
for the y's are known), the noise is independent a t  different 
z points along the trajectory. Dependent noise could be 
modeled if appropriate for a particular application. 

When we don't know which component generated that tra- 
jectory (as is the case in practice for clustering), the con- 
ditional density of the observed data P ( y J l s 2 )  is a mixture 
density: 

TC _ _  
p(yjlsCj, 8 )  = .fk(?JjlsCj, @k)Wk) ( 2 )  

k 

where fk(yjlz3,6k) are the mixture components, wk are the 
mixing weights, and 81: is the set of parameters for compo- 
nent IC. 

Conditional independence between trajectories, given the 
model, amounts to assuming that our individuals consti- 
tute a random sample from a population of individuals, and 
allows the full joint density to be written as: 

z 

The log-likelihood of the parameters 6 given the data set S 
can be defined directly from Eq. (3). 

M IC n, 

(4) 
3 k i 

The task a t  hand is to pull the mixture components out of 
the joint density, using S as a guide, so that the underly- 
ing group behavior can be discovered. The problem would 
be simple if it were known to which group each trajectory 
belonged. Given the group membership of each trajectory, 
and assuming some particular form for the density functions 
f k  (e.g., linear regression models with Gaussian noise), the 
K models c m  simply be fit to the grouped data. If, how- 
ever, the group memberships are hidden, as is the case in 
practice, more complex procedures are required. 

A common approach for dealing with hidden data is to em- 
ploy the EM algorithm ([Ill, [12]). Gaffney and Smyth in 
[5]  detail extensively the solution for the EM algorithm with 
these models. It turns out that the solution simply requires 
using weighted least squares to perform the necessary cal- 
culations. 
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ABSTRACT 
In this study, a crater detection system for a large-scale im- 
age database is proposed. The original images are grouped 
according to spatial frequency patterns and both optimized 
parameter sets and noise reduction techniques used to  iden- 
tify candidate craters. False candidates are excluded using 
a self-organizing map (SOM) approach. The results show 
that despite the fact that a accurate classification is achiev- 
able using the proposed technique, future improvements in 
detection process of the system are needed. 

1. INTRODUCTION 
Recent advances in sensors and telemetry systems have in- 
creased the amount and quality of imagery available for re- 
searchers in fields such as astronomy, earth observation, and 
planetary exploration. However such advances have also in- 
creased the need for a large-scale database of scientific im- 
agery and associated data mining techniques. [1][2][4][9][1~][13]. 

Smyth et al.[13] and Burl et al. [l] developed a trainable 
software system that learns to recognize Venusian volcanos 
in a large set of synthetic aperture radar imagery taken by 
the spacecraft Magellan. 4 machine leaning approach was 
adopted because it is easier for geologists to identify feature 
examples rather than describe feature constraints. Experi- 
mental results showed that the system was able to success- 
fully identify volcanoes in similar imagery but performance 
deteriorated when significantly different scenes were used. 
Burl et al. also proposed an automated feature detection 
system for planetary imagery named Diamond Eye[2] which 
was applied to crater detection and showed a good perfor- 
mance, however, a difficulty similar with the previous study 
was expected. 

Hamada et al.[6] reported on the automated construction of 

image processing techniques based on misclassification rate 
and an expert system composed of a large set of image pro- 
cessing modules. 

In this paper, attention is focused on two difficulties in fea- 
ture detection in optically observed image databases. The 
first is heterogeneity of image quality due to  differences in 
illumination and surface conditions that affect the param- 
eters included in the detection process. The second is the 
wide range of target feature sizes. For example, the diam- 
eter of lunar craters ranges from 1000 km to just 100 m 
(approximately equal to the size of several pixels in the ob- 
ject space). 

In this paper, a feature detection system for a large database 
of scientific imagery is proposed particularly focusing on d e  
tecting features with a wide range of sizes from laxge scale 
imagery of various quality at the best performance. The 
technique is applied to the detection of craters in lunar op- 
tical imagery, 

2. SYSTEM OVERVIEW 
Craters are hollow features of varying size and shape and 
are frequently observed on solid planetary surfaces. Most 
craters were formed as a result of meteoroid impact. Their 
number and size distributions provide significant informa- 
tion about meteoroid activity in the past, the age and rhe- 
ological properties of the planetary surface. Crater analysis 
has relied on human visual interpretation because of the dif- 
ficulties in implementing efficient and accurate automation 
techniques. 

In optical imagery, craters are generally recognized by shad- 
ows around the rim and represented according to the illu- 
mination conditions. Furthermore, image quality varies due 
to albedo, surface roughness, and illumination conditions, 
which further complicates the detection process. 

Considering these difficulties, the following detection process 
is proposed edge detection filtering, binarization, and cir- 
cular pattern detection using Hough transforms or a genetic 
algorithm (GA). Concentrating on edge patterns reduces dif- 
ficulties caused by changing illumination conditions. How- 
ever, additional parameters such as the binariaation thresh- 
old are introduced into the detection process and optimiza- 
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tion of these parameters should be considered. 

Thus the proposed crater detection system is descried as 
follows. 

1. 
2. 

3. 

4. 

5.  

6 .  
7. 

Clustering of original images. 

Selection of representative image for each cluster and gen- 
eration of teacher images by manually extracting features. 

Optimization of detection process for each representative 
image by comparison with the result of 2. 

Learning of candidate pattern for solution screening. 

Detection of feature candidates and screening of unknown 
images using information obtained in 1 - 4. 

Storage of extracted feature information in secondary database. 

High level spatial pattern mining. 

A schematic overview of processes 1 to 5 is shown is Figure 
1. In this study, processes 1, 2, 3 and 4 are examined in 
detail and the effectiveness of integrated process evaluated 
by application to new imagery. 

3. CANDIDATE DETECTION 
3.1 Crater Detection Method 
In this section, the use of Hough transforms and genetic al- 
gorithm is shown as possible crater detection modules. Fur- 
ther details of these techniques are provided by Honda et 
al.i8]. 

3.1.1 Combinational Hough Transform 
Hough transforms are used for the extraction of geometri- 
cally simple parametric figures from binary images[lO]. For 
crater detection, the target parameters are the center and 
the radius of the crater rim. Firstly, the parameter space 
is divided into cells (bins). Probable parameter values (or 
trace) axe calculated €or each signal (white pixel) in a bi- 
nary image assuming that the signal is a part of the figure, 
and the count of the corresponding cell is increased by one. 
After all signals are counted in the parameter space, param- 
eter sets of the figures that exist in the binary image are 
obtained by extracting parameter cells whose count number 
exceeds a threshold. 

Watanabe and Shibata 1151 proposed combinational Hough 
Transform (CHT) that uses a pair of signals in a restricted 
region and multiresalution images ta simplify projection into 

a parameter space. The results showed the use of a CHT 
reduced computation time and significantly improved the 
solution accuracy. Therefore, a CHT with additional noise 
reduction and other minor processes to improve accuracy is 
proposed for crater detection[8]. 

The algorithm of crater detection based on CHT are sum- 
marized as follows. 

1. The original binary image are preprocessed by using some of 
the following methods: isolated noise reduction, expansion 
and shrinking, thinning by Hilditch’s algorithm, pyramid- 
like signal reduction. 

2. The image is degraded using the W X W pixel filter matrix. 

3. 

4. 

5. 
6 .  

7. 

8. 

9. 

10. 

The image is divided into the L x L pixels blocks. 

The radius of the target circle is set to be T = L/4. The 
following process from 5 to 8 are proceeded increasing T by 
1 while T 5 L/2. 

The processes of 6 and 7 are performed for all blocks. 

Among pairs of white pixels in the block extended by 30% 
(2e  X 2L pixels), Pil(z1,yl) and Piz(22,y2), the pairs that 
satisfy T 5 IPilPizI < 2r are selected as signal candidates. 

The center of the circle (sei, yci) is calculated for each pair 
assuming they exist on a circle rim with radius of T .  

The couunt of the (zcc i ,y lo i ,~)  cell in the parameter space 
is increased by 1. 

The cells are sorted concerned with number of count. H the 
count is larger than 0, a circle of (aci,ycirr) is projected 
on the image, and the normalized count and the matching 
ratio are calculated. The definition of both values are given 
by 

N P  = p/npp’, (1) 

M = bp / %PPI (2) 
where N P  is the normalized count, p is the count, n p p  is 
the number of pixels on the rim of projected circle, M is 
the matching ratio, bp is the number of white pixels of the 
rim of projected circle. Furthermore, to exclude the false 
solutions caused by random noises, the internal noise ratio 
I M  within the circle with the radius of h~ is introduced, 
where 0 < h < 1 (typically h = 0.6). 

I M  < IMthreshoid are extracted as the solutions. 
The Cells Satisfying N P  > NPthresholdflM > MthTesholdn 

Since the radius of circle is restricted by L, we utilize the 
multiresolution image of the original grayscale image to de- 
tect the circle with the radius larger than L/2.  It should 
be noted that appropriate three threshold values and noise 
reduction methods must be chosen to optimize the perfor- 
mance. 

3.1.2 Genetic Algorithm 
Genetic algorithms ase frequently used to obtain a single 
solution in optimization problems[5]. In order to implement 
such an algorithm for circular object detection, based on 
[12], a gene is set as a binary string that sequentially ex- 
presses a parameter set of ( m , y i , r i ) ,  where (si ,yi)  and vi 
are the center and radius of the circle represented by the 
i-th gene, respectively. The fitness of the i-th gene, gi, is 
calculated by projecting the circle represented by the i-th 
gene onto the binary image and checking its overlapping ra- 
tio, gi = ni/Ni,  where ni is the number of white pixels on 
the circle and Ni is the total number of pixels on the circle. 



In order to avoid random noise being incorporated into the 
solution, we modified gi as follows: 

9: = gi - g i , T = f T & >  (3) 

where gi,,=fT* is the ratio of the white pixels on a cilcle with 
a radius of frj and 0 < f < 1.0 (typically f = 0.3). 

A variety of genes are then randomly produced and evolved 
through selection, crossing, and mutation. After iteration, 
genes with a fitness higher than the threshold are extracted 
as solutions. 

Since it is possible to have many solutions (craters) in a 
single image, a process to unify similar genes and delete 
detected circles from the original images is introduced to 
improve the system's ability to detect multiple solutions[B]. 
After removal of solution circles, genes are newly generated 
and the process is iterated. 

The algorithm of crater detection by GA is summarized as 
follows. 

1. 

2. 

3. 

4. 
2. 

6. 

7. 

8. 

9. 

The 

The original image is degraded using W x W pixel filter 
matrix. 
Initial populations of genes are generated. 
The following process from 4 to 6 are iterated for a given 
number of generations. 
The fitness of genes, g i ,  are calculated. 
The genes are selected, crossed, and mutated. 
The genes with the same attributes are unified. 
The genes with gi > gihreshold are detected as solutions. 
The solutions are projected as circle rims on the image. The 
intensity of pixels on the projected circle rims are changed 
to 0 (black). 
The processes from 2 to 8 are iterated for a given number 
of times. 

proposed algorithm also includes several parameters 
that affect solution accuracy and optimization i f  these pa- 
rameters is dependent on image quality. 

3.2 Optimization of the Detection Process 
Preliminary results of tests using the above method have 
indicate that noise and signal gaps have a significant dete- 
rioration effect on detection accuracy[S]. The optimization 
of parameters such as the binarization or count threshold 
is effective technique for improving accuracy, however, the 
optimized values are dependent on image quality. 

The following optimization process is suggested (1) clus- 
ter source images, (2) select representative image from each 
group, (3) produce teacher image by manual visual recog- 
nition, (4) optimize crater detection process by comparing 
results from teacher images and the result from the corre- 
sponding original image. The details of these sub-processes 
are provided in the following section. 

3.2.1 Clustering of Frame Images 
It is suggested that the rough grouping of images with re- 
spect to  image quality is an effective technique for simplify- 
ing optimization of the detection process. In this study, the 

clustering of original images using Kohonen's self-organizing 
maps (SOM) [ll] was examined. 

SOM is an unsupervised learning algorithm that uses a two- 
layer network of input layer and competition layers, both 
of which are composed of units with n-th dimensional vec- 
tors. SOM effectively maps the similar pattern of the input 
layer on the competitive layer. In the SOM algorithm, the 
distance (usually Euclidean) between the input vector and 
each unit vector of the competition layer is calculated and 
the input vector is placed into the winner unit, which has 
the smallest distance. At the same time, the unit vectors in 
the cells adjacent to the winner cell (defined by the neigh- 
borhood distance) are modified so that they move closer to 
the input vector. 4s a result of this iterative projection and 
learning, the competitive layer learns to reflect variation of 
the input vectors and can obtain adequate clustering of the 
input vectors. Presently, SOM is widely used for the clus- 
tering, visualization and abstraction of unknown data sets. 

Selection and preprocessing of input vectors is crucial to 
improve SOM accuracy. In order to group lunar images 
according to roughness or contrast, the FFT power spectrum 
of normalized images is adopted as the input vector. 

After clustering, a representative image, which has the largest 
similarity with the unit vector and also includes many craters, 
is selected for each unit cell (cluster). Then craters are 
marked in each representative image and binary teacher im- 
ages generated (see Figure Z(a) and 2(b)). 

3.2.2 Optimization of the Detection Process 
The detection process is divided into three parts for op- 
timization purposes: binarization, preprocessing including 
noise reduction, and circle detection. These processes are 
optimized sequentially using teacher images. 

Firstly, edge detection filtering is carried out on the original 
images. Then, optimal binarization threshold that produce 
a binary image most similar to  the teacher image is identified 
for each cluster. Based on [6], the evaluation function is 
defined by 

where k is the cluster ID, Tk( i , j )  is the intensity of the 
( i ,  j )  pixel of teacher binary image, a is a weight parameter 
(typically a = 0.3), and &(ir j )  is the intensity of ( i , j )  pixel 
of the final binary image defined by 

where Qk( i , j )  is image intensity after edge detection filter- 
ing and @h,k is the binarization threshold. The value of 
Qth,k is searched greedily to maximize Ek. 

Next the combination of preprocessing methods that max- 
imizes positive detection rate of craters defined by P7-k = 
N , / N t k  is identified, where & and Ntk are the numbers 
of craters detected from the binary image and the teacher 
binary image for cluster k, respectively. 



Figure 2: Schematic view of optimization process. 
(a), (b), (c), and (d) show the original image, teacher 
image, tuned binary image, and results of detection, 
respectively. White squares in (d) indicate the ex- 
tracted candidates. 

Finally, the circle detection parameters that maximize P T k  

for the preprocessed image using selected methods is iden- 
tified. Figure 2 shows a schematic view of the optimization 
process. 

As shown in Figure 2(d), extracted solutions may include 
many false solutions, which will be excluded in the post- 
processing stage described in the following section. 

3.3 Screening of Solutions 
A solution screening process is used in the post-processing 
stage to exclude false solutions. Candidate crater images are 
cut out, normalized with respect to its size and intensity, 
and visually labeled true or false. The candidate pattern is 
learned by SOM taking the normalized intensity vectors or 
FFT power spectrum as the input vectors. Each unit in the 
competition layer is labeled either true or false by evaluating 
the ratio of candidates in it. If we assume that the properties 
of the new data set are similar to those of the studied data 
set, the class (true or false) of the newly detected candidate 
is decided by projecting it onto the SOM feature map. 

4. EXPERIMENTS 
4.1 Description of Data Set 

Figure 3: SOM feature m a p  for clustering of original 
images. Cluster ID 0,  1, 2, .. ., and 15 are for each 
cell from t h e  upper left corner to the lower right 
corner in raster-scan order. 

A total of 984 medium browse images from Lunar Digital 
Image Model (LDIM), which had been mosaicked by the 
U. S. Geological Survey based on the lunar global images 
obtained by the U. S. Clementine spacecraft. The images 
were between 322 and 510 pixels in width and 480 pixels in 
height, and resampled at a space resolution of approximately 
500 m/pixel using a sinusoidal projection. Images in the 
polar regions were not used to avoid distortions due to the 
map projection. The radius of target craters ranged from 9 
to 18 pixels. 

For clustering of original images, an area of 256 x 256 pix- 
els was extracted from the center of the normalized images, 
and the FFT power spectrum calculated as the input vec- 
tors of the SOM. The size of the SOM competition layer was 
defined as 4 x 4 units because only a rough grouping was 
needed. One hundred images were sampled and the SOM 
leaning process iterated 100000 times. All images were then 
projected onto the competition layer, and the unit cell vec- 
tors adjusted using K-means method[3]. No images with 
extremely large distance were identified in this process. 

4.2 Result of Image Clustering 
Figure 3 shows the resulting competition layer, hereafter 
denoted the feature map. In this map, the image with the 
smallest distance with each unit vector is displayed in each 
cell to visualize the clustering result. It can be seen that 
relatively smooth images including the Mare recognized by 
a dark region, are clustered on the left side, and the rugged 
terrains called the Highland with many clearly identifiable 
craters are clustered in the lower right corner. This result 
indicates that learning by SOM successfully distinguishes 
between variations in image quality and groups them &eo 
tively. Based on the clustering result, a representative image 
was manually selected and a teacher binary image produced 
for each cluster. 

4.3 Result of Detection Optimization 
The binarization threshold ranged from 30 to 125 and binary 
images that approximated the teacher images were produced 
automatically. It is suggested that a single threshold value 
for the entire image will not be adequate in some cases be- 



Table 1: List of noise reduction cases and optimiza- 
tion result. 

Yes 
Yes 

ID 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
158 
16 

Yes No Yes 
Yes Yes Yes 

- 
No 
No 
No 
No 
No 
No 
No 
No 
YeS 
YeS 
Yes 
Yes 
Yes 
Yes 

Yes 
YeS 
Yes 

No 
No 
Yes 

YeS 

Yes 

Yes 
YeS 
No 
No 

number of 
clusters 
with the 
best per- 
formance 
0 
0 
1 
0 
0 
1 
0 
0 
0 
12 
0 
0 
1 
0 
0 
0 

cause of spatial variations within the image, and that this 
problem should be solved at the pre-processing stage. 

For the optimization of the noise reduction processes, 12 
combinations of four noise reduction methods was exam- 
ined: thinning by Hilditch's algorithm[7], pyramid-like sig- 
nal reduction, isolated noise reduction, and expansion and 
shrinking. 

Table 1 shows the definition of each noise reduction case and 
the number of clusters which had the best performance for 
each case. It can be seen that case 10, which was a combina- 
tion of thinning and isolated noise reduction, achieved the 
highest positive solution detection rate for most clusters (12 
in 16). Thus a combination of thinning and isolated noise 
reduction was applied to all clusters in the following process 
for simplicity. 

Figure 4 summarizes the results of the optimization of the 
detection process for both CHT and GA techniques as per- 
formance curves represented by the positive detection rate 
as functions of the false solution number. In general, a de- 
crease in threshold leads to an increase in both the positive 
detection rate and the number of false solutions. Figure 
4 shows that positive detection rate increases with number 
of false solutions when the number of false solutions is rela- 
tively small, however, it remains constant for lager numbers. 
Thus the initial point of the flat portion of the performance 
curve is considered to be the optimum performance condi- 
tion. In most cases, this coincides with the point that min- 
imiies the false number and maximizes the positive rate. 

Figure 4 also shows that CHT performs significantly better 
than GA. This is mainly caused by the fact that GA's axe 
used to obtain a single solution. Although the GA was mod- 
ified to obtain multiple solutions, the results show that the 
GA can acquire only a few solutions per trial even for teacher 
binary images that include clearly identifiable circles, and re- 
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Figure 4: Optimization result for CHT(a) and 
GA(b). 

quires many iterations to acquire multiple solutions. Thus, 
CHT was selected as the circle detection module suitable for 
crater detection. 

After optimization, the CHT positive solution detection rate 
increased significantly up to dues ranging from 0.2 to 0.6. 
However, since information was lost during the bin&% 
tion process, it will be necessary to consider other detec- 
tion methods for some clusters to further improve detection 
performance. 

4.4 Result of Screening of Detected Candi- 
dates 

SOM clustering of crater candidates extracted in the pre- 
vious process was performed for screening purposes to pro- 
duce the candidate classifier. A total of 646 candidates were 
visually labeled either true or false. Half of the candidates 
were randomly sampled for learning and the remainder were 
used for examination purpose. The percentage of true can- 
didates for both groups was 25.4% and 27.2%, respectively. 
All images were rotated such that the direction of sunlight 



Figure 5: Example of SOM feature map for classifi- 
cation of crater candidates. Inpu t  vectors are set to 
be image vectors. 

incidence was equal, and normalized with respect to inten- 
sity and size. Two types of input vectors were examined 
image vectors represented by pixel intensities aligned in a 
raster-scan order, and the FFT power spectrum. The size 
of the SOM competition layer was set to 6 x 6 units by trial 
and error and 323000 iteration were performed. The neigh- 
borhood distance at iteration t is given by Z ( 1 -  t/323000). 

Figure 5 shaws an example feature map obtained after SOM 
learning. Cells enclosed by thick frames contain more than 
50% true solutions and hence were labeled true candidate 
cells. The remainder are labeled false cells. Figure 5 shows 
a cluster of true candidate cells in the upper right corner. 
To examine SOM classification ability, the true positive rate, 
false positive rate, and averaged positive rate from 5 trials 
were calculated for each case. 

Table 2 summarizes the results of both learning from the 
study data and clustering for the test data using the map 
with the best true positive rate. The result shows that learn- 
ing using image vectors was more accurate than that using 
the FFT power spectrum and classified candidates with an 
average positive rate of 89.7%, which is much higher com- 
pared with the value of 78.4% for FFT power spectrum. 

The most accurate map classified the unknown data with 
an average positive rate of 86%. This indicates that the uti- 
lization of SOM feature map learned from image vectors is 
an effective technique for the classification of solution can- 
didates. It should also be noted that selecting the most 
suitable map from the trials is important to improve clas- 
sification accuracy because performance varied significantly 
axcording to the initial conditions. 

5. APPLICATION TO OTHER IMAGERY 
The eflectiveness of the proposed technique for crater detec- 
tion m examined using imagery that had not been used in 
the optimization process. In addition, multiresolution im- 
ages were used to handle craters with a wide range of sizes. 
Since the radius of target crater ranged from 9 to 18 pixels, 
it was possible to detect craters with a radius up to 72 pixels 
using the multiresolution images of three levels. 

Figure 6 shows examples of detection and screening results 

Table 2: Result of SOM learning for crater candi- 
date screening. 

~~ 

Case True posi- False posi- Average 
tive rate tive rate positive rate 

Image Vector 
study 0.812f0.037 0.931zk0.009 0.897f0.016 

test 0.776 0.891 0.864 
FFT power spectrum 
study 0.691f0.037 0.803zk0.096 0.784*0.013 
bes$/study 0.733 0.788 0.783 
test 0.605 0.768 0.755 

bestlstudy 0.855 0.946 0.929 

for four images. It can be seen that detection ability is im- 
proved significantly even without manual operations. Un- 
fortunately, the achieved detection rate is not sufficient for 
scientific analysis, thus other detection methods should be 
considered for some groups and the selection of circle detec- 
tion modules should also be included in future work. How- 
ever, it is suggested that the framework presented in this 
study itself is suitable for applications in which specific f ea  
tures are extracted from a large set of imagery of varying 
quality. 

6. CONCLUSIONS 
A technique for mining features from sets of large scale of 
optical imagery of varying quality has been proposed. The 
original images were grouped according to spatial frequency 
patterns, and optimized parameter sets and noise reduction 
methods were used in the detection process. Furthermore, 
t o  improve solution accuracy, false solutions were excluded 
using SOM feature map that learned true and false solution 
patterns -from a large number of crater candidates. Appli- 
cation of the extracted information to new imagery verified 
effectiveness of this approach. 

The accuracy of detection achieved in this study, however, 
is not sufficient in comparison with the requirements for sci- 
entific analysis and it is necessary to include other detec- 
tion methods in the future work. However, we believe eom- 
bining automated abstraction and summarization processes 
with the accurate manual techniques is crucial for the devel- 
opment of an accurate scientific data mining system. The 
proposed technique is applicable to various applications in 
which specific features need to be extracted from largescale 
of imagery databases. 
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ABSTRACT 
Kernel methods provide a promising new family of algo- 
rithms for machine learning and data mining applications. 
In particular, kernel-based nonlinear classifiers such as sup- 
port vector machines (SVMs) and kernel fisher discriminants 
(KFDs) have been found to work well in practical problems. 
In addition, there are methods for training these algorithms 
on large-scale data sets making them very suitable for use 
in data mining. In t h s  paper, we evaluate the performance 
of SVi’tfs and KFDs on a dataset generated with a conduct- 
ing polymer composite-based electronic nose. The ability 
of SVM and KFD classifiers to correctly identify the func- 
tional class (category) of a chemical based on its electronic 
nose signature is evaluated and compared against other more 
traditional methods, including nearest neighbors and l inea 
Fisher discriminants. Tradeoffs between the different ker- 
nel methods and performance relative to more traditional 
methods are discussed. 

Keywords 
support vector machines, kernel Fisher discriminant, classi- 
fication, electronic nose 

ls INTRODUCTION 
Arrays of polymer films embedded with conductive or resis- 
tive material have attracted significant attention as “elec- 
tronic noses.” Unlike traditional “lock-and-key” approaches 
to vapo’r sensing, in which a detector is very specific to a par- 
ticular analyte, the polymer-based detectors used here are 
broadly-tuned SO that a given detector responds to many 
vapors and a single vapor causes a response in many de- 
tectors. Only by analyzing the pattern of responses across 
the array of detectors can specific analytes be identified or 
discriminated from chemically similar compounds. As part 
of an ongoing scientific research project between JPL and 
Caltech [2], we have been studying the suitability of kernel- 
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based methods for various classification tasks involving data 
from the electronic nose. In this paper, new results using 
support vector machines (SVMs) and kernel Fisher discrimi- 
nants (KFD) to learn to predict the category (e.g., alcohol or 
hydrocarbon) of a previously unseen (unsniffed?) chemical 
are presented. We will discuss how these results illustrate 
some of the practical decisions and tradeoffs required to ap- 
ply SVM and KFD methods and contrast their performance 
against other traditional methods (Le. nearest-neighbors 
and linear Fisher discriminants). 

2. ELECTRONIC NOSE 
The Caltech electronic nose consists of an array of poly- 
mer films embedded with conductive or resistive material. 
Sorption of a vapor into the polymer films causes physical 
swelling, which leads to a change in the DC electrical resis- 
tance of the film. The DC resistance across each of the films 
in the array is sampled at approximately uniformly-spaced 
sample times. The resistance values are digitized with an A- 
to-D converter. For the experiments reported here, the raw 
time-series data were converted to vector form by computing 
the relative change in resistance in each channel compared 
to the pre-exposure baseline. The raw time-series response 
of the electronic nose to a given analyte thus becomes a d- 
dimensional vector where d is the number of channels (poly- 
mer films). 

All analyte exposures were performed using a computer- 
controlled vapor generation and control system that regu- 
lates the identity, concentration, exposure time, and flow 
rate of the analyte above the detectors [20]. Between expo- 
sures, clean air is passed through the system to remove any 
residue from the previous exposure. Analytes are presented 
to the system in a randomized order to prevent biases in 
the results. For a broad range of concentrations and ana- 
lytes, the electronic nose arrays behave like a linear system. 
Increasing or decreasing the concentration of an analyte pro- 
duces a proportional increase or decrease in the signature, 
and the response to mixtwes of analytes is approximately 
the weighted average of the response to the individual ana- 
lytes [20]. 

An interesting study, which we have recently undertaken 
(preliminary results using nearest neighbor classification ap- 
peared in [2]), involves learning to classify analytes into the 
appropriate functional group based on their electronic nose 
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signature. Five functional groups or chemical families (al- 
cohols, alkyl halides, aromatics, hydrocarbons, and esters) 
were used for our experiments. Within each class, 15 mem- 
bers were chosen for a total of 75 different chemicals. These 
were presented to an electronic nose containing 40 polymer- 
based sensors (two copies of 20 different polymers). The 
analytes were presented to the nose in groups of eight be- 
cause the physical setup of the gas dispensation system has 
eight bubblers. A total of 80 sniffs (ten of each analyte) in 
randomized order was obtained from each set of eight and 
then a new set of eight analytes was swapped in. Each group 
of eight analytes contained two members of four classes so 
that temporal effects would not bias the results (e.g., if all 
alcohols were sniffed in the morning and the temperature 
was cooler then, it might introduce an artificial bias into the 
separability of alcohols from the other classes). Each sniff 
produced a multivariate time series which was converted 
to vector form. Responses of polymer “twins” (duplicates 
of the same polymer type) were averaged to produce 20- 
dimensional vectors for each sniff. This data was then used 
by various kernel-based and traditional classification algo- 
rithms in a leave-one-chemical-aut (LCO) cross-valdiation. 
Note that for a given test example, all other sniffs of the 
same compound were sequestered from the training set. In 
other words, we wanted to determine if a sniff of methanol 
could be used to classify it as an alcohol without having 
previously smelled methanol, but perhaps having smelled 
ethanol, butanol, cyclopentanol, etc. 

3. KERNEL METHODS 
Recently, many traditional linear methods have been gen- 
eralized to corresponding nonlinear forms using Mercer ker- 
nels. Examples include Principal Component Analysis [19], 
k-means clustering [18] nearest-neighbors [HI, and Fisher 
discriminants [14]. Further, completely new kernel-based 
methods such as SVM classification [l] and SVM regression 
[21] have been introduced. 

Consider an 1-by-D data matrix ( X )  of examples. A (Mer- 
cer) kernel K(z; ,  z j )  implicitly projects the two given ex- 
amples from D-dimensional input space into some (possi- 
bly infinite-dimensional) feature space and returns their dot 
product in that feature space. That is, it compiites 

K(%, Z j )  = $(Si) . $(Zj) E $(Zi)’$(L-q), (1) 
for some mapping function 4, but without explicitly com- 
puting the coordinates of the projected vectors. In this way, 
kernels allow large non-linear feature spaces to be explored 
while avoiding the curse of dimensionality. 

The simplest kernel is the linear kernel, implemented as a 
simple dot product: 

d 

K(%,  u )  = u ‘ 2, E c u i  . ‘Vi. (2) 
i=l 

As explained later, kernel methods give the same results as 
their traditional linear equivalents when linear kernels are 
used, but will typically be much slower. This cost arises 
from operating on some matrices of size e-by-l that are only 
of size D-by-D in traditional linecar methods. 

The polynomial kernel is defined by a non-linearly squashed 

dot product of the following form: 

K ( u ,  ?J) = (u . ‘u 4- r)” (3) 

with polynomial degree parameter d. Varying the continu- 
ous offset parameter T changes the relative weighting o€ the 
(implicit) terms in the non-linear polynomial feature space. 
We will refer to  instances of this kernel as “POLY d r ” ~  

One of the most popular kernels is the radial basis function 
(RBF) kernel: 

K(3,  w) = e *, (4) 
with variance parameter u, giving another non-linear squash 
of tBe dot product of the two examples. We will refer to 
instances of this kernel as “RBF g” , where g = &~ 
In this paper we will focus on two specific kernel methods, 
SVMs and KFDs, as described below. 

3.1 Support Vector Machine (SVM) 
Given an e-by4 kernel matrix K (computed from the e- 
by-D data matrix (X)), an l-by-l labels vector (y), and a 
“soft margin” regularization parameter (C > 0), training a 
binary SVM classifier traditionally consists of the following 
Quadratic Programming (QP) dual formulation: 

where 1 is the number of training examples, pi is the label 
(+1 for positive example, -1 for negative) for the i-th train- 
ing example (zi), and K(z<, z j )  denotes the value of the 
kernel function for i-th and j-th examples of X .  

Note that once the kernel matrix is computed, the SVM 
itself is independent of both the input dimensionality ( D )  
and the (implicit) feature dimensionality (in kernel space). 
In this way, SVMs are said to overcome the curse of dimen- 
sionality. 

The vector of alphas a (of length 1) is the solution to the 
above QP problem. Of significant practical benefit is that 
there are no local optima for this QP (unlike, say, neural 
networks). 

Widely-used decomposition methods, such as SMO [16] and 
SVMLight 191, typically train SVMs (Le. solve the above QP) 
in roughly O(1’) time and sub-quadratic space (by comput- 
ing kernel elements only as required). In our experiments, 
we use our own implementation [3] of SiMO, based on [lo]. 

The SVM output classification F ( z ) ,  for any new example 
z, can be computed as: 

P 

G(z) = aiyiK(z,  zi), (-9 
a=1 

‘Where %norm defined as 1 1 %  - V I  l 2  (u . u - 2u u + w . v). 



The SVM weights (a )  over the examples are often rather 
sparse (typically roughly 5% - 20% are non-zero), making 
the zbove output summations somewhat faster in practice 
than shown above. The special examples xi for which 0 < 
ai 5 C are called the support vectors (SVs). Retraining the 
SVM using only the SVs would result in the same a solution. 

Let SV+ represent the set of positive support vector ex- 
amples and SV- represent the set of negative SV exam- 
ples. Similarly, define their corresponding “in-bounds” sub- 
sets IN” and I A - ,  for which 0 < a; < C. As is common 
practice, we compute the scalar bias (b)  as midway between 
the mean of G over IN4 and the mean of G over IN- .  

h SVM maximizes the ,margin distance between the near- 
est positive and negative examples (in kernel feature space), 
which has been shown to lead to excellent generalization per- 
formance in many domains [7], for much the same reasons 
as the similar success of boosting methods [6]. 

3.2 Kernel Fisher Discriminant (KFD) 
The classic linear Fisher discriminant (LFD) for binary clas- 
sification [5] finds the projection weights (w )  that map the 
data X onto a line such that along that line within-class 
variance is minimized while between-class variance is maxi- 
mized. 

3.2.1 LFD 
Specifically, LFD maximizes the following score J: 

W’ SB W 
m a z i m i z e  : J ( w )  = w’ sw 20’ 

The between (SB) and and within (SW)  components of J 
are defined as: 

sg = (m+ - m-)(m+ - m-y, (8) 

r; E X -  I; E X +  

(9) 
where 

are the D-dimensional mean vectors for the negative (X-) 
and positive ( X + )  examples, respectively. 

The D-dimensional projection weights can be computed in 
closed-form using: 

w = s~‘(m- - m+). (11) 

The LFD classification f (z)  for example x is given simply 
by: 

g(z) = x’w, f(z) = sign(g(z) - b ) ,  (12) 

where b is a threshold (typically determined on the assump- 
tion that the class-conditional denisities of the projected 
data are Gaussian). 

3.2.2 KFD 
By substixuting d(xl) for each xi in LFD,, denoting each 
resulting $ ( x , ) .  $(E?)  term as kernel element K(z,, xJ), and 
using some algebraic simplifications, we get XFD (e.g. [13]): 

a’ ZB 0 
m a x i m i z e  : J ( a )  = ____ a’ z w  a‘ 

Zw = XK’ (15) 

(16) 

where 
1 1 

e- e+ p -  = -jy I-, p +  = -K 1-, 

act like (e-dimensional) “mean” vectors 
kernel matrix with elements: 

and K is the t-by-! 

Kij = IC(zi: xj). (17) 

The a are computed in closed-form (analogous to w in LFD): 

The projection weights in feature space themselves are then 
given by: 

i=l 

The KFD classification F ( z )  for example z follows the same 
form as for SV;Vls, except that  ai is no longer restricted to 
be non-negative and labels yi no longer appear: 

e 
G(x )  = Q(z)’W = a i K ( ~ ,  x ? ) ,  (20) 

i=l 

where W is the (implicit) weight vector in kernel feature 
space, and 

F ( x )  = sign(G(z) - b). (21) 

For a linear kernel, the D-dimensional weights ( 2 0 )  of LFD 
can be recovered, by ”weight folding” KFD’s &dimensional 

This shows that KFD with the linear kernel gives the iden- 
tical weights as LFD (but is much slower to train). 

As in SVM’s, some form of regularization for KFD is re- 
quired in practice. One common approach, which we em- 
ploy in our experiments here, is to add some regularization 
scalar to the diagonal of the Zw. This also prevents inver- 
sion problems when ZW is nearly singular. 

’li is the .f-by-1 vector which contains ones where the labels 
vector y has 1’s and contains zeros elsewhere. 1- i s  similar, 
but contains ones where target y has -1’s. 



One remaining issue for KFD is how to compute the thresh- 
old bias (b) .  One approach ([E]), which we employ here is 
to  train a linear SVM, using the projected KFD outputs as 
(1-dimensional) training data, and use the bias computed 
by the SVM. Other approaches are described in [13]. 

In contrast to SVMs, KFDs have recently been shown [13] 
to  roughly maximize the average margin, i.e. the distance 
between the centers of the positive and negative data once 
they are projected on the Fisher line. 

4. CLASSIFICATION EXPERIMENTS 
4.1 Nearest Neighbors 
For baseline comparisons, we repeat here earlier results [2], 
using 1-nearest-neighbors. The Euclidean distances of the 
test example from all members of the reference library were 
computed. The functional class label of the closest member 
of the reference library was taken to  be the class label of the 
test example. For a given test example, all other sniffs of  the 
same compound were sequestered from the reference library. 
In other words, we wanted to  determine if a sniff of methanol 
could be used to  classify it as an alcohol without having 
previously smelled methanol, but perhaps having smelled 
ethanol, butanol, cyclopentanol, etc. A confusion matrix 
showing the results of this experiment is given in Table 1. 
The fist row shows that all members of the alcohol family 
were correctly classified as alcohols. The second row shows 
that  83% of the members of the alkyl halide family were 
correctly classified, with 6.9% of the members confused as 
aromatics, 0.6% confused as hydrocarbons, and 9.4% con- 
fused as esters. Overall, the average correct classification 
percentage is 77%. 

4.2 Handling Multiple Classes 
There are several ways to handle multiple (k) classes (in our 
case, k=five) using binary classifiers. The two that we have 
explored can be described as “one-vs-rest” and “pair-wise 
voting”. 

In one-vs-rest, one learns k classifiers, each deciding if an 
example is of that class or not. One decides which of the 
k classes it is by finding which of the k classifiers has the 
strongest positive output. 

In pair-wise voting, one learns k ( k  - 1 ) / 2  classifiers, for each 
pair-wise contest. If a single class unanimously wins all pair- 
wise contests for an example versus each of the other k - 1 
classes, then its label is assigned to  the example. If a unan- 
imous decision cannot be reached, it is treated as a lLpunt” 
(i.e. no classification is made). 

Due to  computational expense, to date we have only tried 
one-vs-rest for our kernel methods. We have tried both ways 
for LFD. The results are presented below. 

4.3 Kernel Methods 
Kernel methods require model selection to select appropriate 
kernels - both type (e.g. polynomial vs RBF) and param- 
eters (i.e. poly degree or RBF variance level). Ideally, one 
would do model selection search (e.g. via cross-validation) 
for each leave-one-chemical-out in our experiment. However, 
current techniques make that too costly, especially for KDA 

since no efficient model selection methods have yet been for- 
mulated (see [4] a.nd [ll] for some recent methods for more 
efficient SVM model selection). 

Thus, we simply selected kernels for SVM and KFD based 
on which worked well when randomly partitioning the data 
set into training and validation sets. This is likely to  be sub- 
optimal, since we thus selected one kernel to use regardless 
of which chemical class is being left out in turn in the final 
test experiment. 

It is also possible that this approach is slightly contami- 
nated, since some final test chemicals occur in training sets 
during this process. However, we only did this model selec- 
tion bearch to determine “reasonable” kernels to  use. The 
actual model weights in that feature space (e.g. the SVM’s 
or KFD’s a)  are trained in the find test experiments with 
no knowledge of the hold-out chemicals. 

Tables 2 and 3 show the results for the best kernel selected 
for SVMs and KFDs, respectively. 

Note that we found KFD worked best with the unnormal- 
ized polynomial kernel ( X ( u , v )  = (u . v 4- whereas 
SVM worked best with the normalized version: X ( u , v )  = 
$(u.u + 1)3,  where all u and v are 2-normed (unit length) 
versions of the original data. This result is consistent with 
observations made elsewhere that SVMs seem to work best 
when feature vectors are normalized [8]. XFD apparently 
does not benefit from such normalization, due to  the way 
Fisher discriminants use the covariance matrix explicitly. 

The SVM appears to work significantly better. We be- 
lieve part of the reason may be because one-versus-rest ap- 
proaches to multi-class problems are not particularly suit- 
able for Fisher discriminants. The next section shows that 
indeed, at least for LFD, pair-wise classifiers seems to be 
better than one-versus-rest. In fact, the  one-vs-rest LFD 
result shows that our KFD result is no better than that. 

4.4 Linear Fisher Discriminants 
Tables 4 and 5 show the results for the linear Fisher dis- 
crimnation, using one-vs-rest and pairwise approaches, re- 
spectively, on our multi-class classification problem. 

5. CONCLUSIONS 
Our results show that kernel methods offer some promise for 
challenging real-world tasks such as our chemical functional 
class problem. However, we are still working on several 
important issues. One is conducting more comprehensive 
model selection to more accurately (and fairly) determine 
the best kernels t o  use for each chemical hold-out experi- 
ment. We are also studying the tradeoffs of one-vs-rest and 
pair-wise approaches to  multi-class problems such as ours. 
And we are looking into the best way to  use soft (probabilis- 
tic) target labels. For example, scientists recently provided 
us with fractional assignments of the chemicals t o  the five 
groups. We suspect that the current ceiling of test perfor- 
mance (near 85%) may be exceeded once we more fairly 
account for the fast that many of these chemicals do not fall 
exclusively in Gnly one of the five groups. 
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1NN: 0.77 

alkyi halide 0.000 0.831 0.069 
aromatic 0.000 0.267 0.527 

hydrocarbon 0.037 0.019 0.213 

alcohol I alkyi halide 1 aromatic 
alcohol 1.000 j 0.000 0.000 

Table  1: LCO confusion m a t r i x  for 1NN classification of compounds  in to  functional classes. Each functional 
class contained fifteen compounds  w i t h  10 or in a few cases 20 sniffs each. For a given tes t  example,  all o ther  
examples  of the s a m e  compound  were withheld from the reference l ib rary  (Le. LCO = Leave-Chemical-Out). 
Average  correct  LCO classification rate = 0.77. 

hydrocarbon 1 ester 

0.006 0.094 
0.200 0.007 
0.688 0.044 

0.000 I 0.000 

1 SVM: 0.82 11 alcohol 1 alkyl halide 1 aromatic 1 hydrocarbon 1 ester ] 
1 alcohol / I  1.000 I 0.000 I 0.000 I 0.000 ! n.oon I 

ester 0.047 0.147 0.000 j 0.018 0.788 

Table 2: LCO confusion m a t r i x  for SVM tra ined  one-vs-rest (kernel=’poly 3 .l’ C = l O O ) .  Average correct 
rate 0.821, to t a l  runtime = 868.9 secs. (No-holdout t ra in ing  r a t e  = 0.921.) 

alkyl halide 
aromatic 

hydrocarbon 

1 KFD: 0.79 11 alcohol 1 alkyl halide 1 aromatic 1 hydrocarbon I ester 1 
I alcohol 11 1.000 I 0.000 I 0.000 I 0.00o I o.000 I 

, -  
0.013 0.688 0.062 0.000 0.237 
0.000 0.113 0.713 0.120 0.053 
0.031 0.062 0.050 0.856 0.000 

ester , 0.059 0.100 

Table  3: LCO confusion m a t r i x  for KFD t ra ined  one-vs-rest (kernel=’POLY 3 10’). Average correct r a t e  = 
0.792, total runtime = 1919.8 secs. (No-holdout t ra in ing  rate = 0.935.) 

0.000 0.000 0.841 

1 LFD: 0.80 /I alcohol 1 alkyl halide 1 aromatic 1 hydrocarbon 1 ester I 

alkyl halide 

hydrocarbon 
aromatic 

ester 

Table 4: LCO confusion m a t r i x  for L F D  t ra ined  one-vs-rest (Le. KFD wi th  kerne ld l inear ’ ) .  Average correct 
rate = 0.799, t o t a l  r u n t i m e  = 17.4  secs. (No-holdout t ra in ing  rate = 0.927.) 

. .. . ._. ._ 

0.000 0.606 0.062 0.131 0.200 
0.067 0.047 0.687 0.133 0.067 
0.025 0.050 0.075 0.850 0.000 
0.059 0.124 0.006 0.000 0.512 

LFDp: 0.84 alcohol alkyl halide aromatic hydrocarbon ester 
alcohol 0.988 0.000 0.000 0.000 0.000 

alkyl halide 0.000 0.831 0.069 0.006 0.000 
aromatic 0.000 0.067 0.660 0.133 0.013 

hydrocarbon 0.000 0.006 0.138 0.831 0.019 
ester 0.053 0.006 0.000 0.006 0.871 

~ . _ _ _ _ _ _ _  

Table 5:  LCO confusion m a t r i x  for LFD w i t h  pairwise voting. Average correct rate = 0.836. Note: rows do 
not sum to 1 because deadlocks between the different pairwise classifiers are t r ea t ed  as “punts”. 
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ABSTRACT 
Discovering patterns in sequences of events has been an area of 
active research in Artificial Intelligence and Data Mining. Many 
existing techniques which generate sequential association rules 
have two major problems: they either produce too many rules or 
they cannot discover rules that have high conJdence, but weak 
support. Both cases make manual inspection and analysis very 
difficult. The focus in this body of work is on discovering such 
rules in a recognized group of special databases, in which data are 
not uniformly distributed and exhibit self-similarity and fractal 
dimensionalities. We introduce, study and analyze a group of 
sequential association rules as time-invariant and self-similar 
association rules. We provide a formalism to discover such rules 
through the discovery of association rules with the high degree of 
confidence and support. Time-invariant and self-similar 
association rules has been investigated in the context of Critical 
Care database which has been collected during past 15 years at the 
King Drew Medical Center and Harbor UCLA Hospital. Even 
thought the obtained result is in early stage but they are 
encouraging and we would like to apply this technique to other 
synthetic and real databases in the future. 

Keywords 
Association Rules, Self-Similarity, Time Invariance 

I. IIYTRODUCTTON 
Much of the existing data mining techniques have been focused 
on designing efficient methods to mine knowledge and patterns 
from databases. Sequential association rule is one the most well 
known form of extracted knowledge. Instead of statistical methods 
which are looking for a global model for data, association rules 
mainly find local patterns. An association rule is in the form (P * 
Q), where P and Q are sets of attributes, meaning that in the rows 
of the database where the attributes in P have true value, also the 
attributes in Q tend to have true value. Association rules define 
with two major parameters: support and confidence. The support 
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of a given rule is the ratio of the records having true values for the 
attributes of (PwQ) to number of all records, whereas the 
confdence of that rule is the ratio of the number of records having 
true values for attributes of ( P N )  to the number of records 
having true values for attributes of P. 
The main approach for mining association rule in general derives 
by Agrawal et al [4] call a-priori, which exploits the support 
requirements for association rules. The key observation is that if a 
set of attributes appears in a fraction of the tuples, then any subset 
of such set also appears in a fraction of the tuples. Variants and 
enhancements of this approach underlie essentially all known 
efficient algorithms for computing association rules or their 
variants. The general algorithm mainly works with the support 
level and confidence requirement plays no role in the algorithm, 
and is completely ignored until the end of the discovery loop 
when high-supported sets are screened for high confidence. 

Many existing techniques which generate association ruIes are 
facing two major problems: they often either produce too many 
rules andor they cannot find interesting rules. By interesting 
rules we refer to those rules which have extremely high 
confidence, but for which there is weak support. Both cases make 
manual inspection and analysis very difficult. 
This work is motivated by the open question of discovering 
interesting rules. For example, in medical treatment domain, the 
standard association rule algorithms may be useful for extracting 
patterns with high supporf such as 

“if treatment A applies to patient in first hour of 
admission, she recovers in less than 8 hours”, 

but are essentially useless for discovering rules such as 

Yf treatment A applies to patient after 96 hours, she 
may recovers after4 days”, 

because there are only a few patients who received the treatment 
after the 96 hours following the admission procedure. 
There are two possible objections to removing the support 
requirement form the discovery process[6]. First, this may cause 
an explosion in the number of rules that are produced and make it 
difficult for a user to distinguish the rules of interest or take huge 
amount of time to discover such rules. Second, it may be argued 
that rules of low support are uninteresting. While this might be 
true in the classical market-basket applications, there are many 
applications where it is essential to discover such rules of 
extremely high confidence without enough support. For many 
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scientific databases interesting rules are indeed very crucial and 
does not happen so often. To name a few: medical database, 
financial datasets including transaction databases, identifylng 
identical or similar documents or web pages, identifying similar 
vectors in high-dimensional spaces and collaborative filtering [6] 
are examples in which a rule with IOW-SUPPG~~ and high 
confidence is very crucial . Some of these applications consists of 
a sparse table and the goal is to identify column pairs that appear 
to be similar, without any support requirement. In addition, 
detecting causality is another important form in data mining, 
where it is important to discover associated fields, but there is no 
notion of support [17]. 
The implicit assumption in some of the studies on sequential 
association rules is that the data is uniformly distributed and 
attributes are independent from each other. This assumption 
basically implies that a-priori like algorithms do not use of the 
data structure, shape and characteristics. However, real data sets 
disobey these assumptions. A recognized groups of data typically 
are skewed and exhibit fractal dimensionalities. For instance, most 
of the biological systems contain self-similar structures that are 
made through recurrent processes. In these databases, the 
information and embedded complexity are hierarchical. In 
addition, they are self-similar andlor contain self-similar 
structures and/or have been generated through recurrent processes 
at least up to a certain level. Many physical systems contain a 
form of functional self-similarity that owes its richness to 
recursion. Human brains, economic markets, musical notes, 
network data also create enormously complex behavior that is 
much richer than the behavior of the individual component units. 
New findings in different branches of science and technology also 
show the presence of self-similarity in different domains. To name 
a few: medical diagnosis (physician treatment and patient 
response), Robot navigation (robot move and environment 
response to robot sensors) and Network behavior monitoring 
(packet transmission, switch behavior and network response) are 
examples of such environments. 

The main goal of this paper is to provide a novel technique to 
address above-mentioned problems for a special form of temporal 
databases which shows self-similarity up to a certain degree. In 
general, self-similarity or long range dependence refers to 
observation of similar patterns when a discrete or 
continuous time process is scaled in time. The process in 
larger scale is a copy of itself in smaller time scales. We 
employ such idea for self-similar databases. The presence 
of a rule in small scale is a copy of itself in larger scale and 
vise versa. As regular a-priori algorithms discover rules in 
smaljer scale with enough user define support we can 
discover rules in larger scale through the discovered rules in 
smaller scale even if they do not have enough support. 
While there have been much effort on observing self-similar 
structures in scientific databases and natural structures, there is 
few work on using self-similar structure and fractal dimension for 
data mining, predictive modeling and forecasting. Among these 
works, using fractal dimension and self-similarity for managing 
the dimensionally curse [19], learning association rules [j], 
application in spatial joint selectivity in databases [9] and Self- 
Similar Layered HMM for self-similar strucmres [2] are 
considerable. 
The rest of this paper is organized as follows. In section 2 we 
explain the problem statement along with notation and definitions. 
In section 3 we outline related work to this paper. In section 4, we 
introduce the time-invariant association rules for sequential 
databases, its definition and properties. In section 5 we discuss or 
method on discovering time-invariant sequential association rules. 
Section 6 shows the current result with an experimental finding in 
Critical Care patient database followed by the future work and 
conclusions in section 7. 

Table I: Example 
Patient ID = 1 

of a Critical Care database 
Patient ID = 2 



2. PROBLEM STATNBNT 
We are given a database of sequences D=(d,,dz, ..., d,}. Each 
sequence d; belongs to a patient, customer or in general belongs to 
an entity and consists of a collection of perceptions and actions. 
Each item in a sequence is either a perception or an action. Each 
perception consists of: entiv-id ,perception-time and 
attribute-set (attribute-id, attribute-value). Each action also 
consists of entity-id, action- time, action-id. Table 1 shows 
examples of 2 different patients in a given database. Perceptions 
O,, O2 and O3 has been observed for all patients across the 
database'and treatments X and Y has been applied. Grayed rows in 
Table 1. refer to actions. 

2.1 Definition 
Given a database D of N data-sequences, an action set of C and 
Perception set 0, user-specified min-gap and man-gap time 
constraints, the problem of mining interesting sequential patterns 
is to find all sequences whose support is greater than the user- 
specified minimum support or its confidence is greater than the 
user-specified minimum confidence. Each sequence represents a 
sequential pattern of perception and action, also called an 
interesting sequence. 
Note that the notion of min-gap and man-gap are different with 
what Agrawal et a1 introduced in [3]. In their work the min-gap 
and max-gap basically is used for removing noise and outliers in 
time series matching process. However in our point of view min- 
gap and man-gap refers to the length of a sequential pattern in 
general. If we look at an association rules in form (P + Q), where 
P and Q are sets of attributes, min-gap associate with P while 
max-gap associate with P and Q. The definition of min-gap and 
man-gap will be explained later in this chapter. 
The main idea is to discover interesting rules by scaling the 
general sequential association rules (mainly those which satisfy 
minimum-support). The notion of scaling which associate with 
min-gap and max-gap will explain in section 4. 
We do consider quantities of perceptions but do not consider the 
quantities for actions (for example the dosage of drug in our 
example): each item is a number for actions and a function of 
quantity for perceptions. Without loosing generality and for the 
purpose of better understanding we map actions and perceptions 
to different set. We denote a sequence by <s,,s,, ... s,> in which si 
is an action or perception. Each si will be a tuple of quantities and 
the time (value, time) and it refers as item. In general we 

demonstrate each sequence with S(i):EzlF, in which i refers 

to entity id , percepption stands for the index of the observed 
perception and start and end refers to the starting point and 
ending point of a given sequence. For instance, perception O3 for 
patient ID = 1 in Table.1 will be shown as the following: 

s(1) ?,IO = <(0, 8), (1, 12),fX913), (1,241, (X,26), w), f W), (1,38), 
(X,44),(1,50)>. For the short note we only show the value of 
perception and action : S(l>:,,, =<O,l,X,l,X,l,Y,l,X,l>. For a 

specific i temj in sequence S(i)!, we use s(i)g. In addition to 

show the time of a given item in sequence S(i)fwe use of 

T( S(i)f). For instance in previous example T(S(1);)  =12. 

2.2 Pattern 
We define a pattern as a sequence with. additional capabilities to 
normal sequence. First, a pattern can have a general observation 
symbol standing for all possible observation or action. We show 
this symbol by [A] for actions and 101 for observations and [I] for 
either action or observation. A pattern also can have * in front of 
each item in sequence. A * represents the zero to infinite number 
of such item. We denote a pattern with P and the Lp=IPI represent 
the length of pattern. Patterns only represent the values and do not 
contain the time of sequence. Table 2 shows a full definition of 
pattern notation. For instance Pi=<fAla,l,X,I,Y,[I]*,l> and 
P2=61,[I]*,A,[I]*,I] are simple examples of patterns and 
S( i) :E = d, O,X, Y ,  I > and S (i) { e  = <I, l ,X ,  0, Y, -1,Z >are example 
of sequences which satisfy Pz. 
We also associate a max-gap ( G m A  and min-gap (Gmjn) with a 
pattern. G,, and Gmrn basically control the length of the 
sequence. If we consider a sequence in the form of P + 0, in 

which P refers to S(i)&-,, and Q refers to S(1');, , Gnja controls 

the length of the whole sequence and Gmilr controls the length of 
the P part in P 3 Q. Hence, for a given pattern with defined Gma 
and Gmin 

T(S(i),P,,) -T(S(i>P)< G- 

T(w,P,- l , ) -w(9f)  Gd. 

Table 2: Notation and Definitions 

Symbol Description Example 

item Either Action or Perception x, 1 
A Actions X 
Oi Perceptions 
[A] Any kind of actions 

-1 
Y 

101 Any kind of perceptions 1 

[I] Any item (actions or perceptions) x ,  1 
Y* Unlimited number of perception Y Y,Y,Y 

[A] * Unlimited number of actions XY,X 
[O]* Unlimited number of perceptions l,l,-l 
[I]* Unlimited number of actions or X,l>Y,-l 

perceptions 

Rephrasing the problem statement, we are looking for all frequent 
patterns <sI,s2, ... s,,> when their confidence is grater than user 
defined minimum-confidence even if their support is less than 

minimum-support, while and T(S( i )&,)  -?"(S(I')f) <Gmx and 

~ ( S ( 1 ' ) ~ - ~ , ) - ~ ( ~ ( i ) ~ ) >  Gmin. In our definition support is the 

frequency count of a sequence Sji):, =<ss,s2, ... s,> in D, and 

codidence will be as: Frequency count of S(i)f,n.= ax,, ..., s,~> / 



Frequency count of S(i)&,., = <sD, ..., s,.~>. As it shows we are 

looking for if-then type of rule (P  3 Q) in which if part refers to 
S( i )~ , - ,  and then part refers to S(i){, . 

3. RELATED WORK 
Sequential pattern mining is an important data mining problem 
with broad applications, including the analyses of customer 
purchase behavior, Web access patterns, scientific experiments, 
disease treatments, patient database, natural disasters, DNA 
sequences, Network data analysis etc. In AI a lot of work has 
been done for discovering patterns in sequential data [I21 [SI. In 
the database context, where input data is usually much larger, the 
problem has been studied in a number of recent papers [6, 181 
[14] [4]. In [14] event sequences are searched for frequent 
patterns of events. These patterns have a simple structure 
(essentially a partial order) whose total span of time is constrained 
by a window given by the user. The technique of generating 
candidate patterns from sub-patterns, together with a sliding 
window method, is shown to provide effective algorithms. In [4] 
the problem of discovering sequential patterns over large 
databases of customer transactions is considered. Similarly to 
[14], the strategy of [4] is starting with simple sub-patterns 
(subsequences in this case) and incrementally building longer 
sequence candidates for the discovery process (Aprion 
Algorithm). Almost all of the previously proposed methods for 
mining sequential patterns and other time-related frequent patterns 
are apriori-like, which states the fact that any super-pattem of a 
non-frequent pattern cannot be frequent. Based on this heuristic, a 
typical-like method such as GSP El81 adopts a multiple-pass, 
candidate-generation and test approach in sequential pattern 
mining. 
Han et a1 proposed a technique to mining sequential data without 
candidate generation [ 101. They introduced frequent pattern tree 
structure, which is an extended prefix tree structure for storing 
compressed, crucial information about frequent patterns, and 
develop an efficient FP-tree-based mining method, FP-growth, for 
mining the complete set of frequent patterns by pattern fragment 
growth. The work in [20] also deals with the discovery of 
sequential patterns. In [ZO] the considered patterns are in the form 
of specific regular expressions with a distance metrics as a 
dissimilarity measure in comparing two sequences. In [21] a 
scenario is considered where sequential patterns have previously 
been discovered and an update is subsequently made to the 
database. Das et al in their work [7] presents a new method for 
rule discovery from time series data. They slide a window over 
data and find the class of the subsequence and then find common 
episodes in represents. 
Many researchers have studied the problem of too many rules and 
discovering interesting rules (e.g., Piatesky-Shapiro & Matheus 
1994; Klemetinen et al 1994; Silberschatz & Tuzhilin 1996; Liu 
& Hsu 1996; Padmanabhan & Tuzhilin 1998) have been proposed 
to help the user find interesting rules from a large number of 
discovered rules. The main approaches are either using some 
interestingness measures to filter out those uninteresting rules or 
using the user's domain. Cohen et al studied the finding rules with 
high confidence and low support. They developed a family of 
algorithms, employing a combination of random sampling and 
hashing techniques. 

There are a few works, which attempt to incorporate the self- 
similar information in the association rule discovery. Barbara 
introduced using the fractal dimension to analyze how association 
rules occur in a dataset [5].  They developed a two tire techniques. 
First, as a k-itemset is under consideration, and they are scanning 
the dataset to compute its support, they also roll a window and 
compute the fractal dimension of the occurrence of this rule as the 
algorithm goes through the data. Secondly, if this itemset is found 
to have a lot of support, enough information about the fractal 
dimension of this rolling window will be kept to be used when 
processing the k+l extensions of this itemset in the next iteration 
of @e algorithm. Our work is different with [5] as we address 
scalability and interesting rules rather than using fractal 
dimension to find those rules. 

4. TEN1 INVARIANT SEQUENTIAL 
ASSOCIATION RULES 
The notion of time-invariant sequential association rules refers to 
a group of discovered rules in which a change such as scaling in 
time constraints implies a new rules with enough support or 
conjidence. As pattern in smaller scale repeats in larger scale, a 
new rules may discover by the change in time constraint of 
discovered rules such as Gmin and G,, Time-invariance space is 
broader than self-similarity space. While self-similarity has to be 
maintained in different scale of a given data, the notion of time- 
invariance does not need such requirements and may only 
maintains in one or two scales. 
On the other hand, the notion of self-similarity in general helps to 
understand the concept of time invariance in a continuous time 
series or discrete database. In the following, we review briefly the 
notion of self-similarity in continuous domain and we provide a 
detail definition for time-invariant sequential association rules and 
self-similar sequential association rules. 

4.1 Self Similarity 
The mathematical study of seif-similar shapes and their 
relationship to natural shapes was first presented by Benoit 
Mandelbrot. Self-similar stochastic processes were introduced by 
Kolmogorov in a theoretical context and brought to the attention 
of probabilists and statisticians by Mandelbrot and his co-workers 
and have been used in hydrology, geophysics, biophysics, and 
biology and communication systems [13]. 

In general, self-similarity or long range dependence refers to 
observation of similar patterns when a discrete or continuous time 
process is scaled in time. The process in larger scale is a copy of 
itself in smaller time scales. In self-similar signals the key 
parameter is not the mean or variance, but the degree of se!f- 
similarity, defined via the Hunt parameter. The notion of self- 
similarity is not merely an intuitive description but a precise 
concept captured by the following rigorous mathematical 
definition. Let X be wide sense stationary process, that is; a 
process with constant mean and finite variance and auto 
correlation function r(k). For each m=1,2, ..., let x (m) denotes a 
new time series obtained by averaging the original series X over 
non-overlapping blocks of size rn. That is for each m=1,2, ... , 
x'"' is given by X k ( m )  =l/m(Xh-m+l +...+ X,), which 

K 2 1 . Note that for each m, the aggregated time series x (m) 



defines a wide sense stationary process; let T ( m )  denote the 
corresponding auto correlation function. The process X is called 
exactly H-self similar if for all m>O it holds 

km 

By looking at a self-similar sequential data generated through 
recurrent process, a macro point of view suggests that the overall 
system behavior is more a trajectory among phases. As a self 
similar process repeats it self , a pattern will be repeated in 
different scales. Discrere self-similarity share the same 
characteristics with continues domain. In the following we define 
the time-invariant sequential association rules and self-similar 
sequential association rules. 

4.2 Time-Invariant Association Rules 
In the following, we provide definition of time invariance and 
self-similarity €or association rules along with some examples. 
Time-invariant Sequential Association Rule: A sequential 
association rule such as P define as a frequent pattern, if it 
satisfies user defined support and confidence with Gpmin and 
Gp- (GP,,,~,, refers to Gmin and Gpmx refers to G- for pattern 
P). P is time-invariant if there is a pattern such as Q, with Gq,, 
and Gqnla satisfies minimum-support or minimum-confidence 
when Gq,, = Kmin * Gpmin and Gq,,= K,, * Gp,, (Gqmi, 
refers to Gmh and Gq-refers to Gmm for pattern Q). Pattern Q 
calls interesting if it does not satisfy the minimum-support but 
satisfies the minimum-confidence. Note that in most of the cases 
K,,, and K- belong to the same order of magnitude and 

Self-Similar Sequential Association Rule: A pattern Q calls self- 
similar sequential association rules if Q known as time-invariant 
sequentid association rule and if Q maintain such property for 
different scale of Kmi, and K,, in which K,, , K,, E R 
A self-similar data exhibits fractal dimensionalities up to a certain 
level and has been generated through a recurrent process. The 
fractal dimension of a time series and self-similarity may validate 
through well-known algorithms such as introduced in Ell]. 
Example 1: Assume S = <l,X,Y,1,-1,1,0,X,X,X,2,Y,1,2,X,Y,l,X, 
O,-J,l,X,-l,Y>. Pattern P = <l,[I]*,X,[I]*,Y> with Gm=3 and 
Gm,=4 will have support = 3 and confidence = 315. If we scale 
up this pattern with G,., =6 and G,,-=l2 the support and 
confidence will be 2 and 2 respectively. 
ExmpIe 2: Table 1 shows an example of Critical Care database. 
There are two patients in the database with a series of perceptions 
and actions. No patient has more than one transaction with the 
same transaction-time. We do not consider quantities of given 
treatment applied to patient for this stage: each item is a variable 
representing which treatment was given to the patient or not. A 
treatment set is a non-empty set of treatments. A sequence is an 
ordered list of perceptions (signs) and actions (treatments). 
For the pattern P=-cl,[I]*,X,[I]*,T*,l> with Gpm= I O  and Gp-= 
100, support is equal to 5 and confidence is 5/8. If we set the 
minimum support equal to 4, P passs the support filter and it is in 
the result. However, for the pattern R=<l,[I]*,X,lI]*,I> with 
Grmn= 1-50 and Gr,,,= 300 does not pass the support filter, 

because even though its confidence is equal to 1 but its support is 
equal to 2. 
The time-invariant sequential association rules provide such 
facilities to capture R having P with enough support. 
Interpretation of a sequential association rule plays an important 
role in rule understanding and rule scaling. For instance pattern p 
and R can be interpreted as: 

“if treatment A applied to patient right in 10 time units, 
good response will be observed in less than 100 time 
units”. 

Similar to P, Pattern R can be interpreted as : 
“ ga treatmenr has applied to a patient in 150 rime unit, 
patient most probably response in a longer period (300 
time units)”. 

5 .  METHOD 
The general approach is to find the frequent sequences which 
satisfy the support level, G,, and G,, in first step and scale the 
discovered rules in second step to obtain new sequences which 
satisfies an acceptable level of confidence. In a departure of 
previous techniques the main contribution of this methods comes 
from the structure embedded in self-similar data. The self- 
similarity implies a rule in smaller scale may repeats in larger 
scale even though if it may does not satisfy the user defined 
minimum-support. is In the following we explain the major steps 
with a simple pseudo code to capture such rules: 
1. 

2. 

3. 

4. 

Find patterns with support greater than minimum-support. 
This part of the algorithm would be similar to the most of the 
existing approaches. The main difference is in the frequency 
count part of a pattern in which we apply the notion of min- 
gap and ”ax-gap. Figure 1 shows the pseudo algorithm to 
find the frequency count of a pattern in a sequence 
considering min-gap and ma-gap. As it shows the algorithm 
uses of a dynamic programming like algorithm to capture * 
factor and gap constraints in the pattern. Similar to an a- 
priori Iike algorithm L keeps track of matches in pattern and 
sequence. When a match occurs, L(i,j) increases when there 
is at least a match in past items unless if it is a duplicate 
pattern. F keeps track of time difference which will be 
checked for Gmin and Gmx. T keep the exact time of a 
perceptions and actions. Note that the sequence scanned only 
once and the order of the a-priori like algorithm has not 
changed. 
If there is not enough frequent pattern found in the data, 
change the Gmar to a greater value. This increases the 
possibility of observing frequent pattern in a sequence as * 
play an important role in frequency count. 
Since data is self-similar or has shown self-similarity up to a 
certain degree, for all frequent patterns, scales up the rule by 
scaling up the G,, and Gmin, 

Scan D from the beginning and compute the frequency count 
of the new rule. Store new rules if their coniidence is greater 
than user minimum-confidence. These rules are essentially 
interesting cause they are not intuitive, but they could happen 
only a few times for a perception-action data. As the number 
of occurrences of these rules is relatively low they never 
recognized in a-priori like algorithms, which are support- 
based algorithms. 



Figure 1: Pattern Matching Considering Gmin and G,, 
FindFrequentPattern(Pattern,Sequence,Gmau, Gmin); 

initialization 
Loop in Sequence i 
Loop in Pattern j 

IF Sequenceji) == Pattern(jl 
IF /==I 

,> q 
VL 

Else IF L(i-IJ-I)  -= 0 

L(i,j)=L(i-f,j-7) + 1; 

F(i, j)= iemp; To, j )  = i- 1; 

Else IF fia6 nil  on zero xi dVi0US coiumn 

IF it’s not duplicate 

iF it satisfies window condition 
L(i,j) = L(index,j-I) + 1; 
F(i,j) = (i- I-T(index,j- I))+F(index,j- I ) ;  
T(i, j )  = i- 1; 

Else i:o mitcii 

L[i,j)= 1; F(i,j)=O; T(i,j)=&l; 
IF L{i,j)== length of Pattern 

count=count+ 1; 
ELSE 
L(i,j)=O; F(i,j)=O; T(i,j)=i- I ;  

5.1 Scale Factor 
Scale factors ( K ~ n  and K,d 
constraints as: 

has employed to provide new 

The scale factor basically is very subjectwe and has a strong 
bound with the domain knowledge, user input and user 
preferences. For a Medical database a scale factor is from minute, 
15 minutes and an hour up to 8 hours, 12 hours, 24 hours, 96 
hours. For a Network data base scale factor i s  from 10 minutes, 20 
minute, 30 minutes and an hour, up to a week, and a month. 

The scale factor may consider as hidden information. The lack of 
such knowledge is similar to hidden information such as number 
of clusters in a clustering problem or number of state in a Markov 
modeling problem. However, similar to those problems scaling 
factor has strong roots in the nature of the problem itself and it 
can provide either. by user, using a heuristic or through a search 
process. 

5.2 Analysis 
There are two major issues in knowledge discovery loop which 
has to be considered. These issues are Time and Space. 
Number of scan over the time series: a-priori like algorithm 
scans databases P time that is equal to number of L-length 
patterns satisfy the minimum-support. If we show the discovered 
rules in step 1 as R and the length R with L,=IRI, we would scale 
up each rule C time depends on the fractal dimension of the data 
or as much as user specifies. In this case we scan database LR . C 
in the worst case. 
Space needed: If all scaled up association rules would satisfy the 
minimum-confidence, then in the worst case with an average 
length of LA for all discovered rules we need LA. IRI. C more space 
comparing t o  a-priori algorithm which is negligible comparing to 
the whole dataset. 

6. RESULT 
The notion of time-invariant sequential patterns has been 
investigated in the context of Critical Care domain. The database 
is a collection of two different sets of patients from King Drew 
Medical Center (for patient going to Intensive Care Unite mainly 
because of accident, gun shots and/or injuries) and Harbor UCLA 
Hospital (mainly for senior citizens). Our database has collected 
during past 15 years. We applied our test only on the selected 
adequately monitored patients. In addition, data has been 
considered only after the first surgery as the data during the 
surgery is not valid due to the high hemorrhage of the patient. 
Our implementation is in MATLAB programming language and 
has been tested on Pentium I11 processor with 384 MB RAM 
This study is a follow up on work by Adibi et a1 [l] in which a 
complete decision support system designed in Lisp language 
under AppleMcIntosh platform [E]~ We do not address the 
feature selection problem here and we follow the guideline 
provided by [ 151 I 

6.1 Critical Care Domain 
Time-invariant or self-similar sequential association rules play an 
important role in the context of Critical Care since time is a 
crucial factor in Critical Care . For instance, admission time, visit 
time, surgery time, treatment time etc. are examples of association 
of time and patient care in Critical Care unit. 

Our approach is based on the well studied concept that 
irrespective of multiply of superficial clinical manifestations, the 
patient dies of physiological alternations that can be identified, 
and prevented. Shoemaker et a1 showed that the temporal patterns 
of postoperative survivors were found to be different from those 
non-survivors despite the wide variety of illness and operational. 
U5, 161 
The survivor and non-survivor patterns and their importance of 
oxygen transport pattern were confirmed by independent 
investigations [15, 161. In addition, it has been showed that the 
increased delivered oxygen (Do2) and consumed oxygen (V02) 
patterns of early postoperative survivors are clearly separate from 
the relatively normal values of non-survivors [15, 161. Similarly, 
in other etiologic types of shock the survivor patterns are higher 
than those of the non-survivors at comparable time periods. 
However the main question of such protocol is to find under 
which circumstances a patient states moves form survivor to 



Table 3: Discovered Rules in Critical Care Database 

~- I I I 1 confidence I 2 0  I .41 I .39 
I I I 

Confidence I 2 3  1 .40 1 .37 

nodsurvivor and to find which patterns has been repeated in 
survivor and non-survivor patients. 
The physiology of postoperative and years of study in this field 
[16] shows distinguishes property in D02N02 diagram in first 8 
hours. There are two major patterns in survivors or non-survivors 
plot. After the first 8 hours it would be a significant difference in 
survivors and non-survivors pattern. 

6.2 Experimental Result 
For the purpose of the validating of out method, we conducted a 
multi-step experiment on our current database as the following: 

First we pick all adequately monitored patients from 
survivors and non-survivors groups. 
We applied the a-priori like algorithm on this set. We 
set G,, to 1 hour and G,, to 8 hours after surgery. 
We scaled up the discovered rules by K equal to 24 and 
96 hours after surgery for G,,,, . 

The result is interesting and shows rules with a low support and 
high confidence, which did not come up in the first step, will be 
discovered. The main idea is to find the effectiveness of treatment 
in increasing the probability of patient as being as a survivor at 
the end of the procedure by measuring the ratio of V02D02. We 
show the trend of this probability with 1: increases, -1: decreased, 
and 0: unchanged. 
The following are the list of some interesting patterns were for we 
found for G,, = 8 hours ad Gmi, = 1 hour : 

Pattern 1. P= <[I]*,A,[I]*,l> indicate patient response to a 

Pattern 2. P=<(I]*,A,fI]*,O> indicate no change in patient 

Pattern 3. P=<[I]*2AJI]*,-l> indicate no response from the 

We scale up such rule and apply to survivors and non-survivors 
for R = 3 and 12. the observation was that if the treatment applied 
to patient was in the goal of bringing up the D02/V02 it would 
save padent live more probably. When any treatment, which has 
the capability to increase the level of delivered Oxygen to the 
patient, is applied late the response of the patient also has been 
late and sometimes also is too late to recover. 
The discovered rule might not consider as hard-to-find rules or 
hidden rules. There are a huge set of discovered rules. However 
we only discuss those which are easier to interpret and they are 
interesting for physicians and heaith care providers. Even thought 
these result are in early stage but they are encouraging and we 
would like to investigate more undiscovered rules and apply to 
other iarge databases. 

1. 

2. 

3. 

given treatment 

condition after giving a treatment 

patient to a given treatment which A is the treatment. 

7. ~CONCLU§HON AND FUTURE WORK 
Despite the broad range of research on sequential association 
rules, they could not easily discover rules with low support and 
high confidence. We refer to this series of rules as interesting 
rules that are important in a relatively broad range of application 
in science, technology and medicine. In this paper we provide a 
fairly simple but powerful formalism to extend a pool of 
discovered rules to capture interesting rules for a specific 
databases with unique characteristics. The information and 
complexity embedded in these collections are hierarchical, they 
are self-similar, contain self-similar structures and have been 
generated through recurrent processes. We introduced time- 
invariant sequential association rules as those rules which if 
extend in time dimension explore more knowledge form data. 
Since time-invariant sequential association rules are capable to 
discover a relatively hard-to-find association rules, they may 
extent to all database which shows partially self-similarity. 
This research is in early stage. As future work we would like to 
continue our findings in Critical Care domain and extend this 
research to multi dimensional sequenual association rules. In 
addition we are in the process of discovering rules in strongly 
self-similar time series such as synthetic data or network 
databases. The nest step for Critical Care domain is considering 
the dosage of in discovery loop. In addition we would like to 
extend this work when the model shows self-similar structure only 
in a limited range of structure scale. 
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rnSTWACT 
We demonstrate the generation of an engine test model using 
Genetic Programming. In particular, a two-phase modeling 
process is proposed to handle the high-dimensionality and 
sparseness natures of the engine test data. The resulting model 
gives high accuracy prediction on training data. It is also very 
good in predicting low range data values. However, at least partly 
due to limitations of the data set, its accuracy on validation data 
and high range data values is not satisfactory. Moreover, the 
subject experts could not interpret its real-world meaning. We 
hope the results of this study can benefit other engine oil 
modeling applications. 
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Data Modeling; Genetic Programming; Sparse Data; High 
Dimensionality; Virtual Testing. 

1. ENTRODUCTIQN 
Laboratory engine tests are among the tools used to measure 
engine oil performance. These tests are specified in various engine 
oil performmce categories for licensing and certification 
[3][4][12]. Lubricant additive companies and engine testing 
laboratories implement and exercise these tests to produce high- 
quality engine oil. 

One of the engine tests used is Sequence LIE. Early in the year 
2000, capability to m this test had nearly been eliminated due to 
engine parts becoming unavailable. In response to this change, the 
American Society for Testing and Materials (ASTM) Sequence 
IL'III Surveillance Panel formed the Virtual Test Task Force 
(VTTF) in May of 2000. The mission of VTTF was to investigate 
and develop a process, if appropriate, for the use of mathematical 
models based on IIIE data as a substitute for the Sequence llIE 
test. 
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A virtual engine test protocol was subsequently devised and 
reported back to the Panel after four months of investigation. 
However, the proposed process did not receive enough support to 
be implemented. We believe that it is neither technical nor 
practical issues that hinder the implementation. Instead, it is the 
lack of familiarity and comfort with the proposed procedures that 
prevents the adoption of virtual testing [23]. 

In this work, we demonstrate how an engine test model can be 
created using Genetic Programming (GP) [14]. It is hoped that 
through understanding the data modeling process, the related 
organizations will become more comfortable with the concept of 
virtual engine testing. Moreover, we hope other engine oil 
modeling applications can benefit from this study. 

The paper is organized as follows. Section 2 explains the 
Sequence IIE engine test data. Section 3 presents GP algorithm 
as a data-modeling tool. In Section 4, experimental setup is given 
and in Section 5, the experimental results are presented. Section 6 
gives our analysis and Section 7 discusses the results of the study. 
Section 8 reviews related work and Section 9 contains the 
conclusions. 

2.  SEQUENCE IIIE E N G m  TEST DATA 
The test has been running for over 10 years. As a result, we have a 
relatively large data set. However, many of the data have missing 
information. For example, many potential predictors such as base 
oil characteristics were not recorded. We made improvement on 
172 data records, which are used in this study to generate an 
engine test model. 

There are nine passing criteria for the Sequence mE engine test 
[4]. The criteria are percent viscosity increase, average piston 
varnish, average camshaft plus lifter wear, maximum camshafi 
plus lifter wear, average engine sludge, oil ring land deposits, oil 
consumption, oil related stuck rings, and stuck lqteus. A complete 
engine test system is a suite of nine models; each model predicts 
one of the nine passing criteria. In this work, we focus on the 
viscosity increase model. The methodology can be applied to 
generate other models. 

Besides the test results (for the nine passing criteria), each test 
record contains information about the ingredients of the tested 
engine oil. For example, viscosity index improver (VII) and 
dispersants are common engine oil additives. Due to the diversity 
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of the additives and complex naming conventions, the number of 
additive variables is large (109). Moreover, it is common for an 
additive to be present in very few of the data records due to the 
experimental nature of oil formulation. As a result, the data set is 
very sparse. 

Figure 1 shows that 28% of the 109 additive variables appear only 
in one test record within the entire data set. More than 50% of the 
109 variables appear in less than 5 test records. The combination 
of high-dimensionality and sparseness has made the engine test 
data difficult for most data modeling tools. 

... ... 

I -2 1 record 
?z 2 records 1 
x@ 3 records 
@ 4 reocrds 
: others 

\ff&name-f VXI-name-2 ..- _, 

Figure 1: Variables in the data set. 

... VU-rmauat 

2.1 Aggression and Distribution 
Data aggregation and distribution are mechanisms to organize 
data sets. In this study, we group the additive information into 
“families” to reduce the size of variables and to increase the 
densiry of the data set. 

Initially, the expertise of engine oil formulators was used to 
rearrange and collapse variables in the data. We group the list of 
109 additives into 13 families of similar additives. In some cases, 
additive concentration was simply the sum of concentrations of 
the additives in the family. In other cases, equivalency 
relationships based on known or suspected mechanisms were 
applied. For example, equivalent antioxidancy was derived for the 
various antioxidants based on chemical knctionality. The 
number of additives in each family varies, ranging from 2 to 25. 

M e r  the family grouping is defined, each family is represented 
with two columns in the data sct: one column contains the 
additive name and the other gives the additive amount used. Table 
1 shows the aggregated format for W additives. If an additive 
family is not present in a test record, the additive-name is ’hone” 
and the additive-amount is 0. 

... - 
Table 1: Aggregated formats for VII  additives. 

... 

... 
... 0.256 0.0 ... 
... 0.0 0.0 ... ... 1 ... 1 vii-name-1 I 0.256 1 ... 

..* ... none 0.0 ... 

With this aggregation method, the 109 additives are reduced to 26 
variables in the data set. Adding other testing related information, 
such as end of test date, viscosity grade, and base oil 

... ... 

characteristics, the total number of variables is 39. At the end of 
this aggression process, not only the number of variables is 
reduced, the density of the data set is also increased. 

We used this data set for SGI MineSet [I61 to generate a 
regression tree using its default setup: 

The software performs the splitting of training and testing 
dara in a random manner. 

e No cross-validation is performed. 

* The software uses a normalized mutual information as the 
splitting criteria for tree nodes. 

The software uses a confidence-based algorithm to perfom 
tree pruning. 

The folIowing model is generated in one run (note that the status 
window shows the number of training data is 115 while the 
number of testing data is 57): 

Viscosity Increase = 

If (saturates <= 98.18) then 118.478 

else if detergenc <= 13.473 

then 170.333 

else 5242.8 

This result is not satisfactory, as its accuracy (mean absolute error 
1007.9) is not good enough to be a usefil engine test. We believe 
the inherent multicollinearity of chemical additives is a challenge 
to most modeling tools, such as neural networks, support vector 
machines and linear regression. 

As the first attempt to explore the possibility of modeling such a 
data set using GP, we applied Discipulus software 191 to generate 
a mathematical expression model (see Section 3 for examples). 
This approach requires two phases because the model 
representation in this GP software does not support categorical 
values (e.g. VII-name). 

In the first phase, the 13 additive-name columns (categorical 
variables) are removed from the data set. The number of the 
variables is reduced to 26. The purpose of this modeling phase is 
features selection. In the second phase, each of the selected 
additive-amount variables is expanded with its associated additive 
name (column distribution). Table 2 shows the distributed format 
for VII additives (This is the original format before aggregation). 

vii-name-2 21.3 ... 

Table 2: Distributed formats for VI1 additives. 

... ... 0.0 21.3 ..- 

In the following sections, we will present the work using 
Discipulus and the two-phase modeling process to generate an 
engme test model. 



3. GENETIC P R O G U i M N G  
GP is a machine learning algorithm that is suitable for data 
modeling [5] .  Figure 2 depicts the GP algorithm cycle: 

Mean Error 

of models k.2 
"; 7 

Training Data Validation Data 

37.89 76.89 

Evaluate 

Worst Case 
Error 

Selection 

pi 

282.86 1 4 5 2 0 3 7  

Reproduction 

Correlation 

Coefficient of 
Variation (R') 

Figure 2:  GP algorithm cycle. 
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0.98 0.71 

0.96 0.50 

Initially, a population of models is randomly created. Based on 
their fitness, better models are selected for reproduction. Using 
alternation operations, such as crossover and mutation, new 
offspring models are generated for fitness evaluation. This process 
of selection, alternation and fitness evaluation continues until a 
satisfactory model is generated. 

Various representations, selection and alternation schemes have 
been proposed to suit different applications [25][26]. The 
Discipulus GP software uses a linear representation to generate 
mathematical expressions. The follov&g is an example model: 

Viscosity Increase = 

3.4*detergent+ 3*saturatesz 

Table 3 summarizes the parameters used to conduct the 
experiments. 

Table 3: GP parameters. 

5. RESUETS 
We made 10 runs and the final model is the one with the best 
validation fitness: 

Viscosity Increase = F + 2 7 j  abs ( G ) ,  

where F and G are equations, defining additive usage relating to 
different oil characteristics. The interpretation of its real-world 
meaning is not clear (see Section 7) .  

We used five measurements to evaluate the generated models 
(other measurements such as uncertainty will be included in the 
future work). Table 4 summarizes the results of the final model. 

- aromatics/visindex - 9 
Table 4: Experimental results of the final model. 

4. EXPERZRENTS 
The 172 data records come from two different engine test 
laboratories. We used data &om one laboratory (104) for training 
and the other (68) for validation. 

In Discipulus, training data is used to evaluate the fitness of the 
evolved models. This is the fitness that selection for reproduction 
is based on. In contrast, validation data do not participate in the 
model generation process. It serves as an unseen data set to give 
an indication of the robustness of a model. Validation fitness is 
the selection criterion for the find model, in order to avoid 
overfitting. 

A dynamic training subset selection mechanism [lo] is 
implemented in Discipulus. The subset selection criteria include 
difficulty, age and randomness. We considered using this feature 
but decided not to due to the small size of the data set. We believe 
different results would have been produced if this feature were 
applied. 

1 MedianError 1 18.14 I 48.81 1 

The three accuracy measurements (mean, median and worst case 
errors) are calculated on data records whose target viscosity- 



increase values are less than 1000. This means that three records 
in the training data and four records in the validation data are 
excluded from the calculation. This decision is based on the fact 
that 375 is the maximum allowable viscosity-increase to pass the 
engine test (see Table 5). Beyond this threshold, as long as the 
model gives a > 375 prediction, it meets the business needs. 
Indeed, the GP model gives a high enough value for each of these 
seven cases to indicate that they fail the test. 

The relationship measurements (correlation and R’) on training 
data are very good (0.98 and 0.96). However, those on validation 
dab are not as impressive (0.71 and 0.50). Similarly, the accuracy 
measurements (mean, median and worst case errors) on training 
data are far superior to those on validation data. Section 7 will 
provide some possible explanations of such discrepancies. 

6 .  ANALYSIS 
Depending on the performance category that the engine oil is 
tested for, different viscosity increase limits are allowed (see 
Table 5). For example, the maximum percent Viscosity increase 
value for .MI CH-4 category is 200. Any value within this 
threshold is acceptable. The same applies to the other two 
thresholds (100 and 375). 

Table 5: Viscosity increase thresholds YS. test category. 

For the purpose of issuing licenses, what is required of a testing 
system is its ability to predict whether the performance of the 
tested engine oil is within the required threshold or not. The 
actual prediction value is not as important. Based on this merit, 
the engine test model is performing a classification task; it 
classifies the tested engine oil to be in one of the following 4 
viscosity-increase ranges: 

0 < l o o  

e between 100 and 200 

between 200 and 375 

0 >375 

We analyze the accuracy of the GP model in classifylng the 
engine test data using confusion matrices. 

In Table 6 and 7, each row represents the actual values while the 
column gives the predicted value. As shown, the model is very 
good at predicting < 100 range. Within the training set, there are 
69 such kind of records; the model correctly predicted 66 of them 
(96% accuracy rate). The accuracy rate on validation data is 91% 
for t h ~ s  range. Between the range of 100 and 200, the performance 
drops (24% on training data and 0% on validation data). The 
model made no correct prediction on 200 to 375 range values. For 
data value > 375, the accuracy is 100% on training data and 40% 

on validation data. The overall accuracy is 73% on training data 
and 50% on validation data. 

Table 6 :  Confusion matrix analysis on training data. 
( 4  . 

t 

200-375 1 

I I I I I 

(b) 
\ p  I 4 0 0  I 100-200 1 200-375 I >375 1 Total 1 

I I I I I I J 

Table 7: Confusion matrix analysis on validation data. 

( 4  

I I I I I I I 
(b) 

rpp\ PI 400 I 100-200 1 200-375 1 >375 1 Total 1 

The 0% accuracy rate on data range values between 200 and 375 
is the result of small number (3) of training data. As a data-driven 
modeiing method, GP is less likely to generate a good model 
without enough training data. 

7. DISCUSSION 
M e r  presenting the model to subject experts, some concerns were 
raised. First, the accuracy on validation data is much lower than 
that on training data. We investigated the characteristics of 
training and validation data and found there are many differences. 

For example, eight validation data have large quantities (e.g., 
1074 or 1236) of equivalent antioxidancy that produce low 



viscosity-increase values (<200). In contrast, this equivalent 
antioxidancy is of much smaller quantities (e.g., 267, 537, etc.) in 
the training data. Another example is a fi-equently used dispersant 
in training data is hardly used in validation data. Furthermore, 
validation data used ZNDTP A much more often than ZNDTP B 
while training data is the other way around. Such discrepancies 
have made it difficult for GP to generate a common model that 
works well for bo& data sets. 

These differences, although confounded with the laboratones, do 
not seem to be caused by laboratory differences, according to a 
subject expert. They are probably artifacts of the shifting 
concentration of testing between the laboratories, while there were 
concurrent changes of industry testing severity and the change of 
formulating strategies. This information suggests that we should 
consider the whole data set as one trend of engine test records. 
Instead of splitting the data based on laboratory association, it 
might be more appropriate to split them based on other criterion, 
such as the viscosity increase data range. 

Another suggested method to increase the generality of the model 
is to use a predictor ensemble. With this approach, each sub- 
model in the ensemble is trained differently, e.g. by using 
different partition of the data set or different GP parameters etc. 
As a result, each sub-model would give a different prediction for 
the same inputs. The final output of the ensemble is the weighted 
average of the outputs by all sub-models. Numerous researchers 
have shown empirically that such ensembles generalize well 

The second concern that subject experts raised is with model fit 
on training data. The three extreme high value data (1 152, 13519 
and 19393) are very influential to the calculation of the 
relationship measurements. In Figure 3, all data except these three 
extreme high value data are clustered at the lower left comer. The 
trend line gives high correlation between the actual and the 
predicated values. 

t61[211. 
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Figure 3: Model fit on training data. 

300, ...* . . . . . . . . . . . . . . . . . .  1 --- I 
, 

250 ........ * ................................... ...“____...-_.I_; 
B 1 -  

0 100 200 300 400 

Predicted Values  

Figure 4: iModel fit on training data excluding the 
three extreme high vatue data, 

However, within the cluster, the correlation between actual and 
predicted values is not good (see Figure 4). This phenomenon 
highlights a common dilemma when modeling data with a very 
wide range of values: 

High value data points are necessary to train a model to be 
able to predict high range data values; 

However, these high value data points also bias leaning to 
compromise low range value data. 

There are a couple of known methods to work with data set with a 
wide-range of values: 

Convert the data values into logarithm values. 

Customize the fitness function to give proper bias (weight) 
on both high and low value data. For example, the data with 
target viscosity increase value greater than 375 can be 
evaluated with a different standard: when a model gives a 
prediction greater than 375, the error is 0 on this data point. 

Finally, the subject experts also concern with the interpretation of 
the model. It is hard to attribute real world meaning to terms and 
operators such as absolute value. iMaybe a different 
representation, one without absolute value operator, is more 
appropriate. 

“The models were not adequate,” said one subject expert. “The 
data should take most of the blame but I also have doubts that GP 
is an appropriate tool. Performance with the validation set was not 
good. There were also problems with the model fit to the training 
data. I don’t think this would comfort those people who aren’t 
already comfortable with modeling.” 

* 

8. RELATEDWORK 
Using mathematical models for engine testing has been 
implemented in various applications. For example, Rutherford, 
Schip and Duteurtre used statistically designed experiments to 
develop predictions of engine test results from engine oil 
formulation [22]. Similarly, automotive industry uses 
mathematical models to predict airflow dynamics instead of wind 
tunnel testing, or to predict crash performance [19]. 

US. Governments have also adopted the use of mathematical 
models for testing. The United States Environmental Protection 
Agency and the California Air Resources Board allow fuel 
producers to demonstrate clean fuel performance through the use 
of mathematical models derived fi-om emission test databases 
[71[8l. 
In the Machme Learning community, feature selection has long 
been an active research topic [ 11. One approach is using heuristic 
search algorithms. For example, a rough sets-based algorithm 1171 
and a Chi2 algorithm [IS] were designed to find the relevant 
features within a larger set of attributes. 

Another approach is using decision trees algorithms, such as C4.5 
[20]. One result based on the study of Boolean hctions indicates 
that the algorithm is not suitable for filtering irrelevant features 
[2]. A similar feature selection tool in MineSet is “Column 
Importance”. This algorithm is based on Bayes’s theorem; i.e. it 
assumes the independence of variables. This tool is not 



appropriate for data sets where interdependency of variables i s  
abundant, such as the Sequence IIIE engine test data. 

Genetic Algorithms (GAS) have also been used to perform feature 
selection in various applications. For example, Yang and Honavar 
applied a GA to select features from medical data sets [241. 
Another work is by Guerra-Salcedo, Chen, Whitley and Smith, 
who used hybrid GA-based strategies to filter relevant features in 
3 different kinds of data set: a satellite, a DNA and a Cloud data 
sets [I I]. 

Opitz also proposed a genetic ensemble feature selection 
algorithm (GEFS) to select a set of feature subsets for ensemble 
[ 3 81. He demonstrated that this approach produces better 
ensembles on average than that produced by Bagging and 
Boosting. 

9.  CONCLUSIONS 
Data modeling for tesring is not a new concept. Various statistical 
approaches and machine learning algorithms have been applied to 
create models from data to perform testing tasks. We 
demonstrated the data modeling process using GP with data 
aggregation and distribution. This approach has generated an 
engine test model that can predict the viscosity increase of engine 
oil. 

The generated model, however, has not received much support 
from subject experts due to the following reasons: 

* Its accuracy on validation data and high range data values is 
not satisfactory; 

The model fit on training data i s  biased; 

The representation is not easy to interpret. 

* 

0 

We hope to acquire more quality data to improve the accuracy of 
the model. Meanwhile, methods to adjust GP learning bias will be 
developed. We are also considering different model 
representation to better suit the applications. 

We would like to thank Wolfgang Banzhaf and the reviewers for 
their comments and suggestions. We also thank lleana Knumne 
for her support in writing up this work. 
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ABSTRACT 
Quicker, more effective methods of corrosion 
prediction and classification will help ensure a safe 
and operational transportation system for both 
civilian and military sectors. This is especially 
critical now as transportation providers attempt to 
meet the increased expense of repairing aging aircraft 
with smaller budgets. These budget constraints make 
it imperative to find corrosion and to correctly 
determine the appropriate time to replace corroded 
parts. If the part is replaced too soon, the result is 
wasted resources. However, if the part is not 
replaced soon enough, it could cause a catastrophic 
accident. The discovery of models that limit the 
possibility of a costly accident while optimizing 
resource utilization would allow transportation 
providers to efficiently focus their maintenance 
efforts. While our concern in this study was with 
aircraft, the results will also be useful to other 
transportation providers. This paper describes the 
discovery and comparison of empirical models to 
predict corrosion damage from non-destructive test 
(NDT) data. The NDT dara derive fiom eddy current 
(EC) scans of the United States Air Force’s (USAF) 
KC-135 aircraft. While we might suspect a link 
between NDT results and corrosion, up until now this 
link has not been formally established. Instead, the 
NDT data have been converted into false color 
images that are analyzed visually by maintenance 
operators. The models we discovered are quite 
complex and suggest that in data mining we can 
sometimes more effectively handle noisy data 
through more complex models rather than simpler 
ones. Our results also show that while a variety of 
modeling techniques can predict corrosion with 
reasonabIe accuracy, regression trees are particularly 
effective in modeling the complex relationships 
between the eddy current measurements and the 
actual amount of corrosion. 
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1. INTRODUCTION 
Many commercial and military aircraft have reached 
or exceeded their original design life and are subject 
to significant increases in maintenance and repair 
cost due to corrosion. Corrosion is now recognized 
to have a detrimental effect on the structural integrity 
of aging aircraft components, and the lack of 
predictive capability has prevented the operators of 
aging aircraft from successfully controlling 
corrosion. There is particular concern about potential 
catastrophic damage from corrosion on the structural 
integrity of the fuselage. Corrosion may lead to a 
decrease in strength as a result of a loss in skin 
thickness, early fatigue crack initiation caused by the 
formation of stress risers, and increased fatigue crack 
growth rates. [4 ] 

While corrosion problems are endemic to all services 
and all commercial aircraft, the United States Air 
Force (USAF) has many old (20 to 35s years) aircraft 
that are the backbone of the total operational force. 
The oldest are the more than 500 jet tanker aircraft, 
the K C - 1 3 5 ~ ~  which were first introduced into service 
more than 40 years ago. For the most part, 
replacements are a number of years away, and the 
program schedules continue to be constrained by, and 
subject to, the vagaries of annual funding cycles. The 
KC-l35s, along with many aging aircraft, have no 
planned replacement and are expected to stay in 
service for another 25 years. [13] 

With varying degrees, all USAF aircraft have 
encountered and will continue to show signs of 
fatigue, stress corrosion cracking, corrosion, and 
wear. Historically, corrosion has caused an 
escalation of maintenance costs and, in many cases, 
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has severely impacted operational readiness due to 
the increased time required in depot level repair. 

Corrosion is life threatening and costly. More 
efficient, inexpensive corrosion prediction, detection, 
and classification tools are desperately needed to 
protect civilian industry and the military from 
catastrophic accidents and overwhelming expenses. 

“Corrosion control can be one of the aircraft 
industry’s most effective weapons in the battle 
against airplane structural failures. Left undetected 
and/or untreated, corrosion can totally undermine the 
integrity of an aircraft and make it unsafe to fly. It is 
a problem that is not always acknowledged or easily 
solved, and constant vigilance is necessary.” [14] 

Corrosion costs are extremely high. The United 
States spends almost $300 billion a year [14], the 
North American aircraft industry spends $13 billion a 
year [lo] and the United States Air Force spends 
approximately $1 - 3 billion a year [I31 on 
operations pertaining to corrosion costs. These 
monies for corrosion repairs and prevention programs 
take away from needed equipment upgrades and 
other operational programs. Due to budgetary 
constraints in both commercial and military sectors, 
there is a need for an efficient way to defend against 
the corrosion threat. 

Current methods of corrosion detection, mainly non- 
destructive tests, rely on trained operators to find 
corrosion and other flaws. Hence, maintenance 
decisions based on these tests are highly dependent 
on the analytical prowess of the operator. “Human 
Factor studies applied to NDT won-destructive 
Testing] in aircraft maintenance facilities have shown 
that there is a large variety of factors that influence 
inspector performance. Many of these factors apply 
to other NDT methods as well, but with increasing 
degrees of automation, the effect of these factors can 
be reduced and the reliability of the inspections is 
expected to improve.” [6] Table 1 provides a list of 
the factors that influence the ability of an operator to 
detect corrosion. 

Table 1: Probability of Flaw Detection Considerations 12) 

The probability of flaw detection is based on many 
considerations, e.g. 
1. Operator training, alertness and confidence 
2. Correct application of proper technique 
3. Environment of the test- laboratory or Geld 
4. Material homogeneity and isotropy 
5. Flaw characteristics 
16. Shape of part 
7. Calibration and capability of the system 
8. Other factors 

Table 1 shows that operators skills at the corrosion 
identification task can be degraded by a range of 
factors. [2] For example, inappropriate training, lack 
of sleep, or simply lack of focus can result in 
miscalculation of corrosion damage. Boredom is a 
key factor when conducting non-destructive 
evaluations since the likelihood of finding a flaw is 
typically small. Thus, the number of times actual 
corrosion is detected is strongly outweighed by the 
times it is not. [2] 

The current approach to corrosion detemion creates a 
false-color image of the measurements from the non- 
destructive tests (Figure 1). It is then up to the 
operator to examine the image and identify defects in 
the material. The difficulty in interpreting this visual 
display of the measurements is whether the clarity, 
color, and detail of the visualization are sufficient to 
make a determination of flawed materials. There is 
also the question of how the data were filtered or 
manipulated to create this visualization and whether 
that introduced additional errors. 

Figure 1: Visual representation of eddy current response 171 
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Improper representation of data by choosing the 
wrong resolution of the image or an inadequate color 
palette can lead to a wrong conclusion. Because the 
eye has a non-linear response to color, the perception 
of color varies from person to person, thereby making 
the selection of an appropriate color scheme 
extremely difficult. [8] In the case of corrosion 
detection, a miscalculation of whether a surface is 
flawed may have a catastrophic result. 

2. ARTIFICJAL AND NATURAL. 

In order to conduct our study to discover a 
relationship between NDT data and corrosion, we 
need precise measurement of the extent of the 
corrosion. Thus we have built models based on 
artificial corrosion, where the value of the material 
loss is known. With the improvement of artificial 
corrosion production, non-destructive tests have 
shown that the raw results &om scans on artificial 
corrosion are similar to tests conducted on natural 
corrosion. Artificial corrosion plates are often used 
as controlled calibration specimens, in order to 
ensure proper operation of the scanning equipment. 

CORROSION 

The Institute for Aerospace Research, Canada 
developed an accelerated process to simulate the 



corrosion products and damage associated with 
crevice corrosion, which typically occurs in lap 
joints. The corrosion specimens formed during the 
accelerated process were very similar to those found 
in naturally corroded lap joints. In addition, the 
artifkid corrosion damage had similar characteristics 
to that developed during the natural process. [lo] 

Figure 2: Artificial and Natural Corrosion [lo] 

3. DATA ACQUISITION 
The data used for this paper were acquired from the 
Institute of Aerospace Research (IAR.), National 
Research Council, Canada. The datasets and related 
information are from a funded study by the United 
States Air Force. The study, titled “Nondestructive 
Inspections of Calibration Specimens and KC 135 
Aircraft Specimens: NRC-LTR-ST-2267,” was used 
to test the performance of several methods of non- 
destructive tests with a focus on eddy and pulsed 
eddy current testing. 

The specimens that were tested included artificial 
corrosion calibration specimens and retired KC-1 35 
aircraft parts. For the eddy current tests, the 
specimens were scanned using a multi-frequency 
probe. Each specimen was scanned using four 
frequencies: 5.5 ICHZ, 8 kHz, 17 kHz, and 30 kHz for 
0.04-inch panels and 2 kRz, 4 ICHZ, 7 163[2, and 12 
kHz for 0.063-inch thick panels. These panels were 
scanned using both eddy current and pulsed eddy 
current non-destructive testing techniques. This 
paper will focus on the eddy current scans. 

Each eddy current test produced four different data 
files, one for each scail frequency. The scans were 
conducted left to right from the bottom left corner of 
the specimen to the top right. Each scan point 
produced one data point as shown in Figure 3. The 
data points were voltage measurements that included 
negative values. 

n 

Figure 3: Scan pattern 
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Included with the eddy current datasets were bitmap 
images that visually represent the areas of material 
loss. These images were created from the response 
of the eddy current scans. When combined with 
calibration specimens these pictures are very useful, 
mainly because the corrosion areas are known and 
can be colorized for differentiation; it gets more 
difficult when the corrosion areas are not known. 
These bitmaps were a key element in the data 
mapping phase of the training data in this study. The 
eddy current scan of the calibration specimen E l  is 
shown in Figure 4. From top left to bottom right are 
the 5.5 kHz, 8 kHz, 17 kcHz, and 30 kHz scan results. 

Figure 4: Calibration Specimen El visual results 171 
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4. DATA MAPPING AND CONSISTENCY 
The term data mapping is used to describe the action 
of combining four scan files (predictor or input 
variables) and determining the associated material 
loss, which was the response variable’s value. We 
also performed consistency checks by comparing our 
resulting data set with the one used in the IAR study. 

The first step was to decode the given files from the 
original data format and create new files containing a 
single column of rim observations. These files were 
then combined into a single file with four columns 
and am rows. 

The next step was to add the response variable’s 
values - the amount of material loss at a given 
location. These values were found by mapping the 
contents of the image to the appropriate frequency 
observations. 



Figure 6 Bitmap image vs. actual data layout 
A program (Picview) was created to read the bitmap 
images and apply numerical values 0 or 255 to each 
observation based on a user chosen threshold. The 
numerical values were assigned to the red, green, or 
blue spectrum. Different combinations of the 
numerical values created a different color response. 
Files of different thresholds were used as an added 
measure to ensure proper response mapping. The 
starred areas in Figure 5 show the material loss areas 
each image was responsible for generating. 

Figure 5: Picview Images 
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The original datasets were supposed to have the data 
points in a corresponding order to the bitmap images 
provided (Figure 4). The data mapping process 
would have been an easy task if this supposition were 
true. However, mapping the dataset quickly became 
a puzzle. A visual comparison of what the dataset 
should have looked like and the actual mapping 
scheme is shown as 
Figure 6. 

After the above conversions of the total dataset, the 
training set was constructed using the actual data 
layout and Picview image data. Only the loss areas, 
represented by the labeled squares in 
Figure 6, were used in the final dataset; the rest of the 
data were deleted. The original dataset had 606,825 
data points; the new dataset has 360,608 
observations. Paring down this dataset deletes many 
noisy data elements that have no consequence on the 
results. 

Once we had generated the dataset for the study, we 
validated this set. Our validation step used the graph 
shown in the original study by IAR and reproduced in 
Figure 7. Since the raw data used in the original 
graph were not available; we could only validate our 
data set by comparing our results with those shown in 
this graph (Figure 7). The graphs were compared by 
looking at the values of fiequency response for each 
value of material loss. All voltages used in the 
graphs were average values. 

Figure 7: Original graph from LTR-ST-2267 [7] 
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and ordinal logistic regression models (see Table 2 
test set results). However, as shown by the values of 
root mean square error, the improvement was slight. 

Both least squares (LS) and least absolute deviation 
(LAD) regression tree splitting methods were tested. 
The least squares tree performed slightly better than 
the other methodologies with 1,857 nodes, but a 
better choice is the least absolute deviation model 
with only 819 nodes. The LAD regression tree 
model significantly outperformed the other models. 

Table 2: Comparison of methods using a test dataset 

Logklic Regmsrm Madel 8 

7. INTERPRETATION OF RESULTS 
The complexity of the models discovered with the 
seeming violation of Qckham’s razor was an 
interesting occurrence in this study. In order to 
explore this phenomenon, a three-dimensional graph 
was developed using the three most important 
predictor variables, 5.5 kHz, 8 Hz, and 17 kHz. 
This graph shows the complex nature of the data 
where there are “patches” of response values strewn 
throughout the three-dimensional plane. The 
different colors on the graph show the various 
material loss values. 

Figure 10 shows why the more complex models and 
tree-based models statistically performed better than 
the other models. These models tend to “stitch” the 
data together in order to estimate the material loss. 
Notice the several “pat~he~’’  of color that could be 
segregated to provide better modeling accuracy. 

Figure 11 shows how stitching occurs in the two 
dimensional case. Notice that each response follows 
a different dispersal pattern. The simpler parametric 
model would not be able to adequately estimate these 
responses. Therefore, the more complex a parametric 
model, the better it will perform, even with the test 
dataset. A non-parametric algorithm performs well, 
because such models do not fit a curve to the data; 
they use cuts to split out the response. 

Figure 10: Two perspectives of the eddy current data 

Figure 11: Example of Stitching Effect in 2D 
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8. CONCLUSIONS 
This paper has described the use of data mining to 
discover relationships between NDT and corrosion. 
We have shown the potential to augment current 
methods of visually displaying NDT data and asking 
maintenance operators to find significant corrosion. 
In particular, we have found models that predict 
corrosion with average errors of about 0.6 % of total 
material loss. The best models derive from 
regression trees that split the NDT data into cells that 
correspond to the different values of material loss. 



Every model tested showed a surprising level of 
complexity that can be attributed to the nature of the 
corrosion and the NDT testing. 

Corrosion occurs at a very fine scale, and moves 
through the metal in ways that are determined by a 
variety of factors. For example, two important factors 
are environmental conditions experienced by the 
aircraft and characteristics of the manufacturing 
processes that produced both the metal and the 
aircraft. Eddy currents are generated by moving an 
induction coil over local areas that are either free of 
corrosion or corroded, which causes non-linear jumps 
in their values over very small regions of space. The 
combinations of eddy currents at different 
frequencies can help to isolate corrosion in small 
areas but to do this requires complex models that can 
handle the inherent non-linearities. Regression trees, 
which are non-linear, seem well suited to this local 
isolation problem. When we look at figures 10 and 
11, we see that the separate small regions that contain 
the different values of corrosion. In empirical 
modeling terms, this is a multi-modal problem, where 
the modes for each material loss value are separated 
in feature space into many small regions. Hence, data 
mining has effectively uncovered the complexity of 
the corrosion- NDT relationship. 

Additional work will include analysis of data sets 
with other NDT measurements to augment the eddy 
data. We expect to obtain these data sets over the 
next year. The work reported here will provide a 
basis for mining these sets and lookmg for broader 
relationships between NDT and corrosion. The work 
so far provides a good basis building systems that can 
support maintenance operations and significantly 
reduce the chances of missing corrosion that may 
lead to catastrophic failures. 
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ABSTRACT 
Damage in a material includes localized softening or cracks 
in a structural component due to high operational loads, 
or the presence of flaws in a structure due to various man- 
ufacturing processes. Methods that identify the presence, 
the location and the severity of damage in the structure 
are useful for non-destructive evaluation procedures that are 
typically employed in agile manufacturing and rapid proto- 
typing systems. The current state-of-the art techniques for 
these inverse problems are computationally intensive or ill 
conditioned when insufficient data exists. Early work by 
a number of researchers has shown that data mining tech- 
niques can provide a potential solution to  this problem. In 
this paper, we investigate the use of data mining techniques 
for predicting failure in a variety of 2D and 3D structures 
using artificial neural networks (ANNs) and decision trees. 
This work shows that if the correct features are chosen to 
build the model, and the model is trained on an adequate 
amount of data, the model can then correctly classify the 
failure event as well as predict location and severity of the 
damage in these structure. 
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1. INTRODUCTION 
Damage in a material includes localized softening or cracks 
in a structural component due to  high operational loads, or 
the presence of flaws in a structure due to  various manufac- 
turing processes. Methods that identify the presence, loca- 
tion and the severity of damage in the structure are useful 
for non-destructive evaluation procedures that are typically 
employed in agile manufacturing and rapid prototyping sys- 
tems. In addition, these techniques will be critical to reliable 
prediction of damage to bridges, skyscrapers and structures 
deployed in space. 

Damage detection involves three stages of characterization. 
Fircst, whether the damage has taken place in the structure 
(recognition); second, where the damage has taken place 
in the structure (location); and finally, the severity of the 
damage in the structure (quantification). Structural dam- 
age results in changes in structural responses such as static 
displacements and dynamic properties such as natural fie- 
quency, and the mode shapes of the structure. Although 
rigorous damage models exist, in this work we focus on the 
structural damage that is assumed to be associated with 
structural stiffness as a reduction in Young's modulus (E) [I]. 

A practical damage assessment methodology must be capa- 
ble of predicting structural stiffness as a function of changes 
in structural response and dynamic properties 121. Stan- 
dard analytical techniques employ mathematical models to 
approximate the relationships between specific damage eon- 
ditions and changes in the structural response or dynamic 
properties. Such relationships can be computed by solving a 
class of so called inverse problems [3, 41. The current state- 
of-the art techniques for these inverse problems are compu- 
tationally intensive or ill conditioned when insufficient data 
exists. 

Early work by a number of researchers (1, 2, 5, 6 ,  71 has 
shown that data mining techniques can provide a potential 
solution to this problem. These efforts have focussed on em- 
ploying -4NNs to predict damage using static displacements 
and dynamic properties. However, these studies only consid- 
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ered small scale pl-me structures in two dimension. Fh-ther- 
more technical details related to selection of features, train- 
ing and testing data sets etc, were not investigated in detail. 
In this paper, we investigate the use of data mining tech- 
niques for predicting failure in a variety of two dimensional 
(2D) and three dimensional (3D) structures using artificial 
neural networks (ANNs) and decision trees. ANNs approach 
is attractive in that it can learn complex, highly nonlinear 
relationships, and can be used t o  solve inverse problem. On 
the other hand decision tree models are easy to understaad 
and have the potential to discover useful rules. This work 
shows that if the correct features are chosen to build the 
model, and the model is trained on an adequate amount 
of data, these model can correctly predict the location and 
severity of the damage in these structure. 

This paper is organized as follows. In Section 2, the problem 
statement and generation of the data to build data mining 
models is discussed. In Section 3, the data mining models 
using static displacements are built and evaluated. In sec- 
tion 4, dynamic properties of structures are used to build 
and evaluate data mining models. Section 5, presents con- 
clusion and suggestion for future work on this topic are dis- 
cussed. 

S.No 
1 
2 

2. PRELIMINAFUES 

Features Target variable 
fi fi ... fn E1 Ez ... E n  

72.833 151.67 ... 213.45 0 . 5 ~  E ... E 
73.45 152.56 ... 213.65 0.6E E .._ E 

2.1 Problem statement and description of data 
mining models used 

The goal is tu construct data mining models that can predict 
the Young’s modulus (E) of the elements in the structure as 
a function of static displacements and dynamic properties. 

We use ANNs developed by Rumelhart and McCelland [SI 
and, decision tree algorithms based on the work of ROSS 
Quinlan (1993) to build predictive models for Young’s mod- 
ulus. Finding asuitable architecture of A i N  for the problem 
is non trivial. All the ANN models built in this study have 
two hidden layers each employing roughly 20 nodes each. 
In this study, decision tree models are build using the algo- 
rithm provided in Clementine software’, and ANN models 
are build using Matlab’s ANN toolbox’. 

500 

2.2 Generating the data 
To build the right data mining model it is important that 
useful features are considered. The selected features should 
possess the property of correctly identifying damage states 
and should capture the physics of the problem at hand. The 
data is generated by using a finite element analysis code. 
The data layout is shown in Table 1 where f = {f~, . . . , f,] 
i s  the feature set and E = {El,. . . , E,] represents the tar- 
get variables where each record in the table pertains to a 
failure state. Each failure state is simulated by failing ei- 
ther one (single element failure) or more elements (multiple 
element failure) in the structure, in steps (e.g. failing each 
element by reducing E from the base value of E to E’ in 
steps of eE  where e is a small &action). Such simulations 

: I .  . . .  
. I :  : : I  

74.01 153.01 1 ... 214.21 [ E 1 E ... E 
: 1 .  

l@l999 SPSS he., Version 5.0.1. 

12. 
01984-2000 The MathWorks, Inc. Version 6.0.0.88 Release 

It-----------L.-- 
3.0m 3.0 iil 3.0 m 

Figure 1: Plane f rame s t ruc ture  discretized using 
beam elements. 

give the structural response such as the static displacements 
(at the nodes) and dynamic properties such as the natural 
frequencies of the structure. This data can then be used 
directly t o  train and test the data mining algorithms. New 
features can be derived from these raw features. In some 
cases, they lead to a better predictive model. 

Table 1: A typicaI input to the d a t a  mining model. 

3. BUILDING DATA MINING MODELS US- 
ING STATIC DISPLACEMENTS OF STFXJC- 
TURE AS FEATURES 

In this section, data mining models are developed by con- 
sidering the static displacements at the nodes of the struc- 
ture as features. Various examples with increasing complex- 
ity are considered to study the performance of data mining 
techniques. 

2-D Structure - plane frame: The first structure used 
to build the data mining model is shown in the Fig. 1. It is 
a plane frame studied in 151 with the loads as shown. The 
nodes 1, 4, 5 and 6 are fixed and the nodes 2 and 3 are sub- 
jected to  loads. During the generation of the data the loads 
are kept constant. Absolute static displacements namely 
lml, 17~21, (By21, 1 ~ 3 1 ’  17~31, 101/31 (instead of raw data of dis- 
placements at nodes) of the nodes 2 and 3 were selected as 
the features. It was seen that selecting the absolute value 
of the nodal displacement leads to a better model, because 
changes in stifkess iniluence the magnitude of the displace- 
ments and not their sign. 

The testing and training data set of 500 damaged states is 
generated by failing each element at a time. The value of E 
is varied from O.01E to 0.99E in steps of 0.01E. The ANN 
is built by training it on a random sample of 60% of this 
data. The results for ANN are shown in Table 2. For this 
simple problem the models built by -4XN are accurate, as 
the features considered are enough to accurately predict the 



target variable. A plot of the predicted value of E versus ac- 
tual value of E for some typical element is shown in Fig. 2. 
Figure 2 shows an almost linear correlation between the pre- 
dicted and actual E. From this, it is evident that the neural 
network can effectively predict the value of Young's modu- 
lus, and consequently the damage for this simple structure. 

Actual E's 
, 

0 72 I 0 0 ' 72 0 0 
1 0 1 1 9  0 0 16 3 
2 0 1 0 409 0 , 0 409 

I Predicted E's 1 

' 
E1 Ez E3 E4 

e, (%E) 0.032 0.04 0.082 0.076 
0 (%E) 0.20 0.22 0.39 0.50 

T 1 0.9I399 0.9999 0.9998 0.9998 

I 

E5 
l o i l l  2 I O l l I  2 

3 5  

0.026 
0.18 

0.9999 

Table 2: Result of testing ANN w i t h  absolute value 
of displacement as features for plane frame shown in 
Fig. 1,where e, = mean relative error, 0 = standard 
deviation, T = linear correlation. 
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Figure 2: Comparison between ideal and actual E for 
typical element 2 for plane frame shown in Fig. 1. 

To employ the decision tree algorithm the target variable E 
needs to be discretized. Hence in this case the value E was 
restricted to : i) 0 - severely damaged, ii) 1 - moderately 
damaged, and iii) 2 - undamaged. The data for hahing  
and testing the decision tree model is generated in exactly 
the same manner as that for the ANN. The decision tree 
i s  trained on 60% of the data generated and tested on the 
entire data. The result obtained on testing the decision tree 
is shown in the form of coincidence matrix (which shows the 
number of damage states that have been classified correctly 
and incorrectly) in Table 3. Since the coincidence matrix is 
predominantly diagonal, the model build by using decision 
tree is highly accurate. 

3-D Structure  - electric transmission tower: The 
second structure we consider is a 3-D electric transmission 
tower. This structure shown in Fig. 3, consists of beam el- 
ements oriented in 3-D space. The transmission tower con- 
sists of 10 nodes out of which the representative transmission 

Figure 3: Three dimensional electric transmission 
tower discretized using beam elements. 

cable loading is applied at nodes 3 and 4. The nodes 7, 8, 9 
and 10 are fixed to  the ground. In this case, unlike the case 
of the plane frame, each node and element has displacements 
in all three direction (?I, v, w), together with bending about 
two axes (4, 8,) and torsion about the axis of the beam 
(&). These are commonly referred to as the degrees of free- 
dom at any point in the structure. Due to the complexity 
of the structure, the problem is non trivial. To develop an 
adequate data mining model, a sigdicantly large number 
of damage states are required. The study is conducted with 
two different sets of features. In one set of features, the ab- 
solute value of the displacements at the nodes is used. Hence 
there exist 36 features for each damage state. Another set 
of features are defined as follows. For any element e defined 
by nodes i and j ,  the element displacement measures are 
defined as 

de = J(W - .j)2 + (Vi - . j )2 + (Wi - w j y  (1) 
6ei = -&jI (2 )  
8 e ~  = /0zi - @ z j l  (3) 

c$Je = \4zi  - +,jl (4) 



where de is a measure of the element translation, B e l  and 
6',2 are measure of element bending and & is a measure of 
element torsional displacement. Hence, there are a total of 
100 features in this case. 

Actual E'S 

Ideal 
a Predidion using element displacement 
A Prediction using nodal dispiacemenl 

A :' 
A .E' 

I 

0 1 1  2 0 11 2 
o 13 j 0 o 13 0 1 0 
1 0 I 1 0  0 1 9 1  0 - 

Figure 4: Comparison between ideal and actual E 
for typical element 8 for electric transmission tower 
shown in Fig. 3. 

The testing and training data are generated with each ele- 
ment of the structure being damaged by reducing the value 
of E to 0.5E in steps of 0.02E leading to 600 damage states. 
Both ANNs and decision trees a;re trained using 70% of the 
total generated damage states. Figure 4 shows the compari- 
son between the test results of the model using displacement 
ofthe nodes and the model using element displacement mea- 
sure as features. It is evident from the figure that the model 
using the element displacement measure features (Eqs. 1 - 4) 
is more accurate. 

Predicted E's 

Table 4: Some typical coincidence matrices with ab- 
solute displacement of nodes as features for trans- 
mission tower shown in Fig. 3. 

Predicted E's 
I 1  El I E d  

1 2 1  0 1 o 15771 o i o l 5 7 7 j  

Table 5: Some typical coincidence matrices with ele- 
mental displacement measures as features for trans- 
mission tower shown in Fig. 3. 

Tables 4 and 5 show the results for decision trees with abso- 
lute nodal displacement and element displacement measure 
features respectively. bgain, it can be clearly seen that the 
element displacement measure prove to be better features 
for decision tree models. Unlike neural networks, the mod- 
els developed by decision tree can be readily understood and 
interesting rules can be found. For example, a rule generated 
in this c a e  is given by 

if 6'12 5 0.185 then 
if810 5 0.09 then . 

if 07 5 0.545 then E3 = 2 
else E3 = 1 

else E3 = 2 
else if 4 3  5 0.083 E3 = 2 
else E3 = 0 

This rule says that the failure of element 3 depends on the 
displacement of elements 7, 10 and 1 2  which me connected 
to  element 3 (Ref. Fig. 3). Such interesting rules not com- 
monly known in the traditional analysis community can be 
discovered which can be potentially useful to a structural 
designer. 

(1) (2) (3) (4) (5) (6) 
1 

4 5 , h  3 I -  

in (9) 

--- 
3.0m 3.0 m 3.0 m 

Figure 5: Plane frame discretized using beam ele- 
ments. 

Static displacements with varying loads: In the cases 
considered previously the data mining models were built us- 
ing constant loading. But many structures are subject to 
variable loading (when the loads the structure is subjected to 
are continuously changing) and so an effective model should 
be able to correctly predict damage in this case. -4lthough 
the static displacement features are not load independent, in 
this section their performance is studied when they are used 
to build a model for predicting failure under variable loading 
conditions. The plane frame structure in Fig. 5 is used to 
build the model. The feature set consists of features which 
correspond to the location and magnitude of the loads in ad- 
ditional to the static displacements of nodes 2 and 3. Three 
different loading conditions are considered. F i s t ,  node 2 
and 6 %e loaded. Next, node 3 and 5 are loaded. Finally, 
node 8 and 10 are loaded. 

The training data is generated by failing each element in 
the structure by reducing its Young's modulus from 1.0E 
to 0.5E in steps of 0.1E. The loads in each of the three 
loading conditions considered are varied &om 500N to 2500N 
in steps of 500N. The testing data is generated by faAiig 
each element in the structure by reducing its d u e  of E 



from 0.95E to 0.45E, in steps of 0.1E. The loads in each 
of the three loading conditions considered are varied &om 
250N to 2250N. This leads to 2250 failure states, each for 
testing and training the ANN. The test results are shown 

E1 E2 
e, (%E) 0.032 0.046 
G (%E\ 0.040 0.063 

Table 6: ResuIt  of testing ANN when a variation 
in loading is considered for plane frame shown in 
Fig. 5. 

& E4 E5 
0.057 0.050 0.028 
0.074 0.064 0.037 

B 
8 I 
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Figure 6: Comparison between ideal a n d  actual  E 
for typical element 5 ,  when variation in the load is 
considered for plane €rame shown in Fig. 5. 

in Table 6. The plots of the predicted and actual E for a 
typical element 5, is shown in Fig. 6. From the results it can 
be seen that predicting capability of the model using static 
displacement reduces when the loads are varying, because 
two different loads corresponding to different failure states 
can produce the same response. Further investigations are 
necessary to rectify this situation. 

Failure of multiple elements: In the previous examples, 
the model is trained and tested to predict damage with only 
one element failure in the structure. This seems relevant 
because failure in the structure generally starts kom one el- 
ement and then spreads to  other elements. Here the case 
when multiple elements of the structure have failed is dis- 
cussed. For predicting damage in multiple elements of the 
structure, the plane frame structure used previously in Fig. 1 
is employed. The set of features are again the displacement 
coordinates of nodes 2 and 3. 

The data used for training is generated by reducing the 
Young's modulus of each of the elements sim-dtaneously 
from E to 0.5E in steps of 0.1E. This results in 6" - 1 = 7775 
failure states and one undamaged state. After the data is 

Table 7: Result of testing ANN when multiple ele- 
ments are failed for plane frame shown in Fig. 1. 

I 
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Figure 7: Comparison between ideal and actual E for 
typical element 2, w h e n  multiple elements of struc- 
ture fail for plane frame shown in Fig. 1. 

The plots of the predicted E versus actual E for a typical el- 
ement 2, is shown in Fig. 7. It is evident that the correlation 
between them is almost linear. Hence, static displacements, 
prove to be effective features in building an AIW model t o  
predict failure in multiple elements. In the case of decision 
tree the coincidence matrix shown in Table 8, is predomi- 
nmtly diagonal. 

Predicted E's 
I E2 I B d  



4. BUIEDIIB'G DATA MQVIiPG MODELS US- 
ING DYNAMIC PROPERTIES OF STRUC- 
TURE AS FEATURES 

Dynamic properties of the structure as features provides an 
alternative approach for predicting damage. Its advantages 
over using static displacements are:- 

1.4 

1.2 

While dBerent loads produce different static displace- 
ments, the dynamic properties of the structure are 
essentially load independent. For example, dynamic 
properties of the structure include natural frequencies 
and mode shapes. 

In the case of static displacements, different compo- 
nents of the displacement at each node are used as 
features, which result in a large number of features 
for larger finite element discretizations. On the other 
hand if dynamic properties like natural eequency are 
used, then features in the form of only the lowest 'n' 
natural frequencies can be used resulting in a reduction 
of the number of features. 

- 

. a' - 

n 

The natural frequency and the mode shape of the structure 
are obtained by solving the eigenvalue problem: 

[-wi2M + K]@i = 0 (5) 

where M: and K are mass matrix and stiffness matrix, of the 
structure respectively, and wi is the natural frequency corre- 
sponding to the mode shape @+. Damping in the structure 
has been neglected in this study. Structural damage results 
in changes in dynamic properties. The prediction of dam- 
age in the structure can be achieved if the model is taught 
to recognize the changes in the frequencies and the mode 
shapes with the failure of specific members in the structure. 
To train the ANN, the elements of the structure are failed 
one at a time by reducing their modulus of elasticity. For 
this failure state the natural frequencies and mode shapes 
are obtained by solving the eigenvalue problem in Eq. 5. 

Natural frequency: 2-D Structure -three span bridge: 

A x  

1 2 i -I 5 5 7 8 P 10 11 I? 1: Ld IS 1 b  17 I8 
h - :  G . Z  - : : :  - = -  ,&, ,xo 

:.om 
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lo", ~-......-.-..--.I_ & I__ + 10" * 

Figure 8: Three span bridge structure modeled us- 
ing beam elements. 

The structure used for this study is a three-spa, equal 
length continuous beam, with constant properties that was 
studied in 151. This structure is shown in Fig. 8. The beam is 
divided into 18 beam elements, with 6 equal length elements 
in each span. This structure is unsymmetric as regards to 
the boundary conditions. It is fixed at one end and simply 
supported at the other. The training data is generated by 
reducing the value of E from 1.OE to 0.5E in steps of 0.05E. 
The testing data is generated by reducing the value of E 
&om 0.975E to 0.5253 in steps of 0.05E. This results in the 
training and testing data of 181 and 180 records respectively. 

The lowest 'n' natural frequencies of the structure 
(wl, w2 . . . w,) are employed as features to predict damage. 
The study is conducted with a varying number of fist 'aJ 
natural frequencies. For the bridge structure studied here, 
the first 4 natural frequencies are adequate to build a fairly 
accurate predictive model. However, considering additional 
natural frequencies improved the accuracy of the model upto 
first nine natural frequencies. Further increase in the num- 
ber of natural frequencies leads t o  a saturation and a slight 
deterioration in the model's performance. Table 9 and Fig. 9 
shows the results for the model with lowest 9 natural he- 
quencies. 

6 ( % ~ j  i 0.106 1 0.13 1 0.17 1 0.12 j 0.15 
r i 0.999 i 0.999 i 0.999 I 0.999 I 0.999 

Table 9: Result of testing ANN when natural &e- 
quencies are used as features for three span bridge 
shown in Fig. 8. 
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Figure 9: Comparison between predicted ideal and 
actual E when natural frequencies are used as fea- 
ture for unsymmetric structure shown in Fig. 8. 

Next, the structure in Fig. 8 is modified so that it is simply 
supported at both ends, to study the suitability of using 
natural .frequency as features in case of structures exhibiting 
symmetry. The testing and training data is generated in the 
same manner as in the unsymmetric case. In Fig. 10, the 
results of testing the ANN for two symmetrically equivalent 
elements, element 2 and 17 is shown. In Fig. 10, the cases 
in which element 2 has not failed but has been predicted to 
have failed, corresponds to failure states when element 17 
has failed and vice-versa. The same is the case for the other 
symmetrically equivalent elements. This is due to the fact 
that natural frequency is a global feature and, the change 
in the natural frequencies is the same, when either one of 
the symmetric elements is failed . The ANN has no reason 
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Figure 10: Comparison between predicted ideal and actual E when natural frequencies are used as feature 
for symmetric structure. 

to favor the prediction of the failure of one element over the 
other. In order to keep the mean squared error, which is the 
performance criteria used t o  train the ANN to a minimum, 
the model predicts that both the elements have failed. The 
predicted value of the Young's modulus in this case is higher 
than the actual value of the failure, in order to keep the 
mean squared error a minimum. Thus, when a structure 
exhibits symmetry, using natural frequencies alone as the 
features is not sufficient and other dynamic features need 
to be considered or the structure may have to be modeled 
differently using symmetry considerations. 

3-D Structure - electric transmission tower: Natural 
kequencies are used as features to predict damage in the 
structure shown in Fig. 3. The symmetry of the structure is 
disturbed by changing the cross-sectional area of the sym- 
metric elements. The training data is generated by reducing 
the value of E'kom 1.OE to 0.5E in steps of 0.05E, gener- 
ating a total of 251 records. The testing data set of 500 
records, is generated by fading each element by an arbitrary 
amount. The first 12 natural frequencies were considered 
while building the model. The results of testing the ANN 
are shown in Table 10 and Fig. 11. The results show that 
the model is accurate in predicting the location and severity 
of the damage. Natural kequencies prove to be good fea- 
tures for predicting single element failure in an unsymmetric 
structure. 

5. CONCLUDING REMARKS 
This paper presented data mining models to predict the fail- 
ure in the structure as a function of static displacements 
and dynamic properties. Damage was simulated by reduc- 
tion in the values of Young's modulus of the elements in 
the structure. The prediction of the data mining technique 
greatly depends on the features chosen. A more meaning- 
ful attribute produces better results. Hence the data from 

Table 10: Result of testing ANN when natural fre- 
quencies are used as features for transmission tower 
shown in Fig. 3. 

the finite element analysis of the structure should be suit- 
ably preprocessed so that the raw data is converted into 
features that have a closer relationship with the target func- 
tion. While using static displacements, new features such as 
absolute nodal displacements and elemental displacement 
measures were used to generate models for predicting fail- 
ure. These features proved to be better than nodal displace- 
ments. 

Performance results of developed ANN models are signifi- 
cantly better when compared to other relevant results pub- 
lished in the literature for 2D structures [5, 1, 6 ,  71. Further- 
more effective ANN models are developed to predict dam- 
ages in 3D structures with excellent performance results. 
Although ANNs are effective in detecting damage in the 
structure, the developed model can not be interpreted eas- 
ily. Decision trees have the added benefit of generating rules 
that can be manually interpreted as illustrated in the case 
of transmission tower. Such rules may not be commonly 
known in the traditional analysis community and can be 
potentially useful to  a structural designer. 

The development of predictive model that can correctly p r e  
dict the location and severity of damage in large complex 
structures can be a considerable challenge. For the cme with 
variable loading and static displacements as features, the 
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Figure 11: Comparison between predicted ideal a n d  
actual  E for element 1 when natural frequencies are 
used as feature for electric transmission tower shown 
in Fig. 3. 

models developed are not sufficiently accurate. Further work 
needs to  be done to preprocess static displacements and ex- 
tract features which will result in more accurate data mining 
models. Natural frequencies prove to be good features when 
load independent models are to be built. However, for com- 
plex structures, the values of natural frequencies are close to  
each other. This can cause the close natural frequencies t o  
be mistaken for one another. To prevent this, MA4C numbers 
(modal assurance criteria) can be used to distinguish such 
close frequencies, where MAC numbers are scalars that can 
distinguish two mode shapes from one another. Increased 
complexity of the structure would also cause the number of 
target variables (E), to increase. To handle this situation 
sub-structuring may need to be investigated. 
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ABSTRACT 
Numerical analysis software packages which employ a coarse 
first mesh or an inadequate initial mesh need to undergo a 
cumbersome and time consuming mesh refinement studies 
to obtain solutions with acceptable accuracy. Hence, it is 
critical for numerical methods such as finite element analy- 
sis to be able to determine a good initial mesh density for 
the subsequent finite element computations or as an input 
to a subsequent adaptive mesh generator. This paper ex- 
plores the use of data mining techniques for obtaining an 
initial approximate finite element density that avoids signif- 
icant trial and error to start finite element computations. As 
an illustration of proof of concept, a square plate which is 
simply supported at its edges and is subjected to  a concen- 
trated load is employed for the test case. Although simplis- 
tic, the present study provides insight into addressing the 
above considerations. 

1. INTRODUCTION 
It is widely recognized that the finite element method is 
the choice of many analysts for performing structural anal- 
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number DAAH04-95-C-0008. The content does not neces- 
sarily reflect the position or the policy of the government, 
and no official endorsement should be inferred. Access to 
computing facilities was provided by AHPCRC and Min- 
nesota Supercomputer Institute 

ysis simulations. It is a viable computational tool due to 
the various inherent advantages, namely, the capability of 
programming the method in a general purpose manner, the 
ability to handle natural boundary conditions and arbitrary 
loads acting on the structure, and the ability to model com- 
plex geometries. Various methods of generating finite el- 
ement meshes exist in the literature. Some are based on 
prescribed mesh density values at various sample points in 
the geometry. Other approaches such as adaptive h, p, h-p 
refinements also exist. The so-called r-method of relocation 
of the nodes is yet another strategy for developing a suitable 
finite element mesh. 

Numerical methods employing a coarse initial mesh suffer 
from the drawback of needing several successive mesh re- 
finements for acceptable accuracy of results which tend to  
be cumbersome and expensive. It is well known that the pro- 
cedures which start with a coarse mesh and attempt serious 
repetitive refinements, as is the case in most finite-element 
packages, are time consuming and costly. An approach of 
overcoming this limitation involves the use of some type of 
adaptive re-meshing scheme to guarantee convergence in the 
finite element solution. Whilst this approach is attractive, it 
can be slow to converge to ideal finite element meshes since 
the initial mesh for these adaptive schemes has zero knowl- 
edge of the problem apriori. Hence, close to ideal initial 
meshes of these adaptive re-meshing schemes may acceler- 
ate the convergence and guarantee sufficient accuracy in the 
finite element solution. Consequently this reduces the over- 
all solution times for both serial and parallel architectures. 
Recent works [l] and [2] involved the application of Artifi- 
cial Neural Networks (ANN) for the prediction of the finite 
element mesh density in order to  estimate the magnetic field 
in a body. The present study builds upon previous work and 
provides a detailed study as related to structural mechanics 
applications. We specifically outline details in obtaining an 
ideal mesh densities at selected sampling points and an ap- 
proach to enhance the quality of the results by asymmetric 
scaling of training samples. 

In case of the structural mechanics, for illustration, Fig. 1 
describes an elastic body fi with boundary I? which is de- 
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Figure 1: Illustrative application problem descrip- 
tion for predicting finite element mesh density using 
data mining. 

fined by representative critical points c ={CI,CZ, . . . } with 
respect to a fixed co-ordinate system. The elastic body is 
also comprised of materials with properties set M = { (E1,vl , 
. . . ),(E~,vz, I . , ), . . . } where Ej, vi are the Youngs modulus 
and the Poison's ratio respectively. The body is subjected 
to traction loads, t, and variety boundary constraints. The 
response of such a structure includes determination of field 
variables such as displacements, stresses and strain data for 
use in subsequent data mining models. Fig. 2 describes the 
finite element discretization with different material set Mi, 
loads ti and boundary conditions u p i ,  i = 1,2, . . . ,n where 
n is the number of finite element analyses carried out to  
generate the training data for the data mining model. From 
these analyses, it is postulated that one could predict an 
approximate mesh density for the analysis by employing er- 
ror indicators formulated from data mining models. Hence 
€or a given geometry, the objective is to predict the iniital 
finite element mesh density for arbitrary material distribu- 
tions, loads, and boundary conditions as described in Fig. 3. 
Pictorially Fig. 2 describes the training examples to gener- 
ate training data and Fig. 3 describes the test example for 
which the data mining model is required to predict the de- 
sired initial mesh density. 

Figure 2: Illustrative application problem wi th  finite 
element models for training example. 

In this paper, as a proof-of-concept, we explore the calcula- 
tion of the mesh density for a square plate, which is simply 
supported at its edges, with a concentrated load acting on it. 
This simplistic test example was selected since we already 
know the exact theoretical solution to the problem. From 
this, we can immediately assess if data mining techniques 
are indeed helpful for predicting the mesh density. The mesh 

density is predicted by training a simple feed forward neural 
network and making it learn the relationship between the 
mesh density and geometric features of the model. In Sec- 
tion 2, the preliminaries are discussed, followed by a discus- 
sion of the methodology used in predicting the mesh density 
in Section 3. In Section 4 and 5 the results obtained and 
conclusions of this study are discussed. In Section 6, future 
directions and the challenges involved are highlighted, 

A =Discretization 

Figure 3: Overall goal of data mining illustrting ap- 
plication problem far predicting finite element mesh 
density. 

2. PRELIMINARIES 
Finite element modeling involves discretizing the original 
domain into finite elements such as triangles. Such a typical 
process is shown in Fig. 4(a) using triangular elements for il- 
lustration, though other element types could also have been 
used. This is accomplished by a mesh generator for which 
the input is the mesh density at selected points in the do- 
main. This mesh density can be defined in many ways. One 
such definition could be the number of nodes in the vicin- 
ity of a point [3]. Another definition could be the value of 
the radius (R) of the circle which is circumscribed over the 
triangle as shown in Fig. 4(b). This determines the triangle 
size and hence the element size in a finite element discretiza- 
tion. The mesh density value is the target variable of the 
classifier and the features can typically consist of geometry 
descriptions, loads applied, etc., depending on the problem 
at hand. 

3. METHODOLOGY 
In this section we discuss the various steps followed in cal- 
culating the initial mesh density for the problem at hand, 
the neural network architecture used to train the data, asd 
feature selection required for training. 

3.1 Generating the data 
We start by training the predictive data mining models us- 
ing example data, which pertains to "ideal" meshes of the 
representative geometries or domains. Here a square plate, 
is simply supported at its edges as shown in Fig. 5 .  A con- 
centrated load, is applied at a point whose coordinates are 
(q,yl). For this situation an analytical solution is available 
in [4], [5] which gives the displacement at any point (xs,ys) 



Figure 4: (a) Typical finite element mesh discretiza- 
t ion and (b) ideal e lement  representation for trian- 
gular and quadrilateral elements. 

sin(mnzl) sin(nnyl) sin(m;r%) sin(n7ry) , w=- 
;r4Dab 4p m=1 22 n=l ( 2 ) Z  + (? . )Z  

(1) 

where P is the load applied at load coordinates (zl, yl), D is 
the flexural rigidity of the plate given by la[f,2), where E 
is the Young’s modulus, t is the thickness, v is the Poisson’s 
ratio, a is the length of the plate and b is the width of the 
plate. Once the displacement is obtained from this equation 
for a point (xs,ys>, the mesh density value (hideal), which is 
the radius of the circle circumscribing the triangle (as shown 
in Fig. 4(b)), is determined for this point via the following 
steps: 

P 
I 

points along each direction such that they axe equidis- 
tant from each other as shown in the Fig. 6(a). The 
displacements, w,  are then computed at each of these 
points using Eq.(l). 

Next all the points that are on the line in a particular 
direction are chosen. The method of least squares is 
used to  make the best linear fit as shown in Fig. 6(b) 
using various w’s at the chosen points along this di- 
rection. The process is repeated for all the directions. 
Note that one could employ the best quadratic fit, best 
cubic fit, etc., depending on the application and the 
type of the finite element employed. 

*-  The error is then estimated between the analytical so- 
lution and the numerical solution obtained from the 
best fit line, for each direction. Here, the error is de- 
fined by the LZ norm on the solution vector in each 
direction. This norm should be less than the prede- 
fined tolerance limit, E ,  for all the directions. Then, 
this value of the radius of the circle forms the hideal 

value, otherwise the radius is reduced. Note that the 
data mining model developed only holds for predeter- 
mined values of the tolerance limit, E ,  for all other 
values the above steps have to be repeated till conver- 
gence to a numerical solution whose error lies within 
the tolerance limit. 

I 

I 
i 

a /-.. 
Figure 6: Ideal mesh density hideal computations for 
situation with known analytical response: (a) circu- 
lar magnifier wi th  points in chosen direction and (b) 
best  fit line to exact values along a selected direction 
A-B. 

_.. 
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Finally after obtaining the various hldeai values at different 
sampling points in the domain, the mesh generator draws 
the approximate finite element mesh as shown Fig. 4(a). 

3.2 Figure 5: Problem description: a simply supported 
at all edges of square plate wi th  concentrated load. 

Architecture of the Artificial Neural Net- 
work (ANN) 

The artificial neural network considered in this work consists 
of a one input layer with 7 processing units corresponding 
one hidden layer with 19 processing units, and one output 
layer with a single processing unit. The ANN is trained to  
the corresponding target vector on the output layer. This 

First, choose a circular magnifier (radius of influence) 
of radius ani unit about the sample point (x8,y8). 
Next, start with and choose different directions in the 
circle at equal angular displacements. Then choose 



,Table 1: Training and test data layout for the problem. 

target vector is the mesh density value for the finite element 
model. 

FTOJX -1 Sample poinr (X y, ) 

Figure 7: Features description for simply supported 
square plate with concentrated load. 

3.3 Features selection 
Since the model seeks to predict the element size, hideal at 
a point in the domain, the training data can have data s m -  
pled at many points in the domain of a single representative 
geometry. It is essential and critical that the features cho- 
sen for training have all of the characteristics that can be 
encountered in real applications such that the data-mining 
model becomes almost problem independent. The various 
features considered here for training the model are shown in 
Fig. 3.2 and include: 

D Projxload, Projyload - projections of the load point 
(m,yl) to the nearest adjacent edges, 

ProjX, ProjY - projections of sample point (zc,,ys), 
where the mesh. density is being determined, to the 
nearest adjacent edges, 

d - distance of the point (z,,ys) to the load point 
(21 9 %  1 , 
P - load value, 

t - thickness of the plate. 

For illustration, the corresponding feature table is described 
in Table 1. 

4. RESULTS 
Sample points were chosen randomly in the plate and the 
displacements were found for a load applied at different 
points which were again chosen randomly on the plate. The 

training data set consists of values of hideal in the range 
0.01 to  1. This results in a finite element size scale ratio 
1:lOO which is the case in more realistic k i t e  element appli- 
cations. The distributions of hideal vdues are identical for 
training instances and testing instances. 

1 load 1 0.68214 I 

pZS-p%J 
thickness 
projpxl 0.17636 : projpyl 0.17247 

Table 2: Reported relative importance of features 
to t h e  developed neural network model. 

The values of loads and thicknesses chosen for the testing 
case are different from the training case and, were chosen 
such that they are within the range of training case val- 
ues. The training set consisted of 36,600 records and the 
test set consisted of 18,300 records. A neural net model was 
created using the training set. The relative importance of 
each of the features to the neural network using Clementine 
software is listed in the Table 2. The plot between the 
predicted mesh value and the actual mesh value is shorn 
in Fig. 8. In Fig. 8 the points above the diagonal represent 
predicted mesh sizes which are larger than the actual mesh 
size. This is detrimental for the finite element solution accu- 
racy. Similarly, the points below the diagonal represent the 
predicted mesh sizes which are smaller than the actual mesh 
size. This is not detrimental for the the finite element solu- 
tion. However, it is critical as the number of finite elements 
increases, it increases the computational cost. Restricting 
the attention only to the points above the diagonal, a seal- 
ing technique is used to bring down the points close to the 
diagonal by increasing the number of records pertaining to 
these points in the training set. The scaling technique used 
for this is given by 

where W is the number of records and k is a constant with 
a value of 2 in our case. Also, it is observed that most of 
these points pertain to the case where the load was close to 
the boundary of the plate. Therefore, in conjunction with 
the above scaling procedure load points that were within 
0.5 units distance from the boundary of the plate were not 
considered in the new training set. A new neural net model 
was created with this new training set. The performance 
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Minimum Error 
Maximum Error 
Mean Error 

- 0.74468 
0.53632 
0.0028778 . ~~ 

Mean Absolute Error 
Standard deviation 
Linear Correlation 
Occurrences 

0.019690 
0.051059 
0.98256 
18300 

Table 4: Actual and predicted number of elements 
for mesh in Figs. 10 - 13. 

MESH ElementsA,+ 
Fig. 10 5667 
Fig. 11 7307 
Fig. 12 7270 

5. CONCLUDING REMARKS 

Elementsp,,d % increase 
5780 2.15 
7414 1.46 
7258 -0.17 

The present work concentrated on a proof-of-concept appli- 
cation. A relatively simple problem where we know the the- 
oretical solution was employed to assess the performance of 
data mining models. A simply supported square plate with 
a concentrated load was considered as a test case. Close to 
“ideal” mesh density hideal at various points in the plate 
were predicted with different load values, location and plate 
thickness. The training set was created without finite ele- 
ment discretization and this allows to create a data mining 
model. An ANN is employed and the initial results for pre- 
dicting the appropriate mesh density are encouraging. 

6. CHALLENGES AND FUTURE WORK 
There are challenges involved in getting the training sets for 
a complex geometry subject to different loading conditions, 
composed of different materials and different boundary con- 
ditions (Ref. Figs. 1 - 3). Analytical solution are generally 
not known and we need to devise a strategy to determine 
mesh density values for a general case. Assessments of fea- 
sibility and performance are planned to be undertaken for 
various other data mining methods like Classification and 
Regression Trees (CART) and Multivariate adaptive regres- 
sion splines (MARS) to find an alternative to neural network 
techniques. The overall goal is to create an effective system 
intended to provide an ideal initial mesh for a k i t e  ele- 
ment simulation code or an initial “close to ideal” mesh for 

a subsequent adaptive solver employed for the finite element 
computations. Such a system will enable a knowledge-based 
approach for the pre-processing phase of finite element sim- 
ulation codes. 
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Figure 8: Comparison between predicted and actual 
mesh size before scaling. 

Figure 9: Comparison between predicted and actual 
mesh size after scaling. 



(a) Actual mesh (b) Predicted mesh 

Figure 10: Finite element mesh for the load location (1.5,3.5). 

(a) Actual mesh (b) Predicted mesh 

Figure 11: Finite element mesh for the load location (3.25,3). 




